双向搜索?
双向搜索是一种双向运行的搜索技术。它使用两个同时运行的搜索,第一个从源到目标,另一个从目标到源反向运行。在最佳状态下,这两个搜索将在数据结构的中间相遇。
双向搜索算法在有向图上工作,以找到从源(初始节点)到目标节点的最短路径。这两个搜索将从各自的位置开始,当这两个搜索在某个节点相遇时,算法停止。
双向方法的重要性 - 它是一种更快的技术,可以减少遍历图所需的时间。
这种方法在起始节点和目标节点唯一且已定义的情况下有效。两个方向的分支因子相同。
性能指标
完整性 - 如果在两个搜索中都使用 BFS,则双向搜索是完整的。
最优性 - 如果使用 BFS 进行搜索并且路径具有统一成本,则它是最佳的。
时间和空间复杂度 - 时间和空间复杂度为 O(b^{d/2})
示例
#include <bits/stdc++.h> using namespace std; class Graph { int V; list<int> *adj; public: Graph(int V); int isIntersecting(bool *s_visited, bool *t_visited); void addEdge(int u, int v); void printPath(int *s_parent, int *t_parent, int s, int t, int intersectNode); void BFS(list<int> *queue, bool *visited, int *parent); int biDirSearch(int s, int t); }; Graph::Graph(int V) { this->V = V; adj = new list<int>[V]; }; void Graph::addEdge(int u, int v) { this->adj[u].push_back(v); this->adj[v].push_back(u); }; void Graph::BFS(list<int> *queue, bool *visited, int *parent) { int current = queue->front(); queue->pop_front(); list<int>::iterator i; for (i=adj[current].begin();i != adj[current].end();i++) { if (!visited[*i]) { parent[*i] = current; visited[*i] = true; queue->push_back(*i); } } }; int Graph::isIntersecting(bool *s_visited, bool *t_visited) { int intersectNode = -1; for(int i=0;i<V;i++) { if(s_visited[i] && t_visited[i]) return i; } return -1; }; void Graph::printPath(int *s_parent, int *t_parent, int s, int t, int intersectNode) { vector<int> path; path.push_back(intersectNode); int i = intersectNode; while (i != s) { path.push_back(s_parent[i]); i = s_parent[i]; } reverse(path.begin(), path.end()); i = intersectNode; while(i != t) { path.push_back(t_parent[i]); i = t_parent[i]; } vector<int>::iterator it; cout<<"Path Traversed by the algorithm\n"; for(it = path.begin();it != path.end();it++) cout<<*it<<" "; cout<<"\n"; }; int Graph::biDirSearch(int s, int t) { bool s_visited[V], t_visited[V]; int s_parent[V], t_parent[V]; list<int> s_queue, t_queue; int intersectNode = -1; for(int i=0; i<V; i++) { s_visited[i] = false; t_visited[i] = false; } s_queue.push_back(s); s_visited[s] = true; s_parent[s]=-1; t_queue.push_back(t); t_visited[t] = true; t_parent[t] = -1; while (!s_queue.empty() && !t_queue.empty()) { BFS(&s_queue, s_visited, s_parent); BFS(&t_queue, t_visited, t_parent); intersectNode = isIntersecting(s_visited, t_visited); if(intersectNode != -1) { cout << "Path exist between " << s << " and " << t << "\n"; cout << "Intersection at: " << intersectNode << "\n"; printPath(s_parent, t_parent, s, t, intersectNode); exit(0); } } return -1; } int main() { int n=15; int s=0; int t=14; Graph g(n); g.addEdge(0, 4); g.addEdge(1, 4); g.addEdge(2, 5); g.addEdge(3, 5); g.addEdge(4, 6); g.addEdge(5, 6); g.addEdge(6, 7); g.addEdge(7, 8); g.addEdge(8, 9); g.addEdge(8, 10); g.addEdge(9, 11); g.addEdge(9, 12); g.addEdge(10, 13); g.addEdge(10, 14); if (g.biDirSearch(s, t) == -1) cout << "Path don't exist between " << s << " and " << t << "\n"; return 0; }
输出
Path Traversed by the algorithm 0 4 6 7 8 10 14
广告