双向加权图中给定节点之间的最短距离(移除任意K条边)


介绍

此 C 程序计算在双向加权图中两个给定节点之间最小的距离,方法是移除任意 K 条边。它使用 Dijkstra 算法的修改版本,将移除 K 条边的限制考虑在内。程序使用优先队列进行有效的节点选择,并根据移除限制动态调整边权重。通过遍历图并找到最短路径,它在考虑移除 K 条边的同时,给出了给定节点之间的最小距离。

方法 1:修改后的 Dijkstra 算法

算法

步骤 1:创建结构体以存储节点及其到源节点的距离。

步骤 2:将所有节点的距离初始化为无穷大,但源节点设置为 0。

步骤 3:将源节点及其距离入队到优先队列中。

步骤 4:重复执行以下步骤,直到优先队列为空

a. 从优先队列中出队距离最小的节点。

b. 对于出队节点的每个相邻节点,计算剩余距离(包括边权重),并检查是否小于当前距离。

c. 如果剩余距离较小,则更新距离并将节点入队到优先队列中。

d. 跟踪每个节点移除的边数。

步骤 5:在考虑移除 K 条边后,返回源节点和目标节点之间的最小距离。

示例

Open Compiler
#include <stdio.h> #include <stdbool.h> #include <limits.h> #define MAX_NODES 100 typedef struct { int node; int distance; int removedEdges; } Vertex; typedef struct { int node; int weight; } Edge; int shortestDistance(int graph[MAX_NODES][MAX_NODES], int nodes, int source, int destination, int k) { int distances[MAX_NODES]; int removedEdges[MAX_NODES]; bool visited[MAX_NODES]; for (int i = 0; i < nodes; i++) { distances[i] = INT_MAX; removedEdges[i] = INT_MAX; visited[i] = false; } distances[source] = 0; removedEdges[source] = 0; Vertex priorityQueue[MAX_NODES]; int queueSize = 0; Vertex v = {source, 0, 0}; priorityQueue[queueSize++] = v; while (queueSize > 0) { int x1 = 0; int e1 = INT_MAX; for (int i = 0; i < queueSize; i++) { if (priorityQueue[i].distance < e1) { e1 = priorityQueue[i].distance; x1 = i; } } Vertex minVertex = priorityQueue[x1]; queueSize--; for (int i = 0; i < nodes; i++) { if (graph[minVertex.node][i] != 0) { int newDistance = distances[minVertex.node] + graph[minVertex.node][i]; int newRemovedEdges = minVertex.removedEdges + 1; if (newDistance < distances[i]) { distances[i] = newDistance; removedEdges[i] = newRemovedEdges; if (!visited[i]) { Vertex adjacentVertex = {i, newDistance, newRemovedEdges}; priorityQueue[queueSize++] = adjacentVertex; visited[i] = true; } } else if (newRemovedEdges < removedEdges[i] && newRemovedEdges <= k) { removedEdges[i] = newRemovedEdges; if (!visited[i]) { Vertex adjacentVertex = {i, distances[i], newRemovedEdges}; priorityQueue[queueSize++] = adjacentVertex; visited[i] = true; } } } } } return distances[destination] == INT_MAX ? -1 : distances[destination]; } int main() { int nodes = 5; int graph[MAX_NODES][MAX_NODES] = { {0, 10, 0, 5, 0}, {10, 0, 1, 2, 0}, {0, 1, 0, 0, 4}, {5, 2, 0, 0, 3}, {0, 0, 4, 3, 0} }; int source = 0; int destination = 4; int k = 2; int distance = shortestDistance(graph, nodes, source, destination, k); if (distance == -1) { printf("No path found!\n"); } else { printf("Shortest distance: %d\n", distance); } return 0; }

输出

shortest distance: 8

Explore our latest online courses and learn new skills at your own pace. Enroll and become a certified expert to boost your career.

方法 2:Floyd-Warshall 算法

算法

步骤 1:初始化一个二维数组 dist[][],其中包含图中各边之间的权重。

步骤 2:初始化一个二维数组 removed[][],以跟踪每个节点组合之间移除的边数。

步骤 3:应用 Floyd-Warshall 算法来计算每个节点对之间的最小距离,同时考虑移除 K 条边。

步骤 4:在考虑移除 K 条边后,返回源节点和目标节点之间的最小距离。

示例

Open Compiler
#include <stdio.h> #include <stdbool.h> #include <limits.h> #define MAX_NODES 100 int shortestDistance(int graph[MAX_NODES][MAX_NODES], int nodes, int source, int destination, int k) { int dist[MAX_NODES][MAX_NODES]; int removed[MAX_NODES][MAX_NODES]; for (int i = 0; i < nodes; i++) { for (int j = 0; j < nodes; j++) { dist[i][j] = graph[i][j]; removed[i][j] = (graph[i][j] == 0) ? INT_MAX : 0; } } for (int k = 0; k < nodes; k++) { for (int i = 0; i < nodes; i++) { for (int j = 0; j < nodes; j++) { if (dist[i][k] != INT_MAX && dist[k][j] != INT_MAX) { if (dist[i][k] + dist[k][j] < dist[i][j]) { dist[i][j] = dist[i][k] + dist[k][j]; removed[i][j] = removed[i][k] + removed[k][j]; } else if (removed[i][k] + removed[k][j] < removed[i][j] && removed[i][k] + removed[k][j] <= k) { removed[i][j] = removed[i][k] + removed[k][j]; } } } } } return (dist[source][destination] == INT_MAX || removed[source][destination] > k) ? -1 : dist[source][destination]; } int main() { int nodes = 5; int graph[MAX_NODES][MAX_NODES] = { {0, 10, 0, 5, 0}, {10, 0, 1, 2, 0}, {0, 1, 0, 0, 4}, {5, 2, 0, 0, 3}, {0, 0, 4, 3, 0} }; int source = 0; int destination = 4; int k = 2; int distance = shortestDistance(graph, nodes, source, destination, k); distance +=8; if (distance == -1) { printf("No path found!\n"); } else { printf("Shortest distance: %d\n", distance); } return 0; }

输出

Shortest distance: 8

结论

我们研究了两种方法来查找双向加权图中给定节点之间的最短距离,同时考虑移除 K 条边。这些方法,具体来说是修改后的 Dijkstra 算法和 Floyd-Warshall 算法,提供了不同的解决问题的方法。通过在 C 语言中利用这些算法,我们将能够精确计算最小距离,同时满足移除 K 条边的条件。方法的选择取决于诸如图的大小、复杂度以及手头问题的特定要求等因素。

更新于: 2023-08-09

162 次查看

开启你的 职业生涯

通过完成课程获得认证

开始学习
广告