Keras 模型可以像一个层一样被调用吗?如果是,请演示。


Tensorflow 是 Google 提供的一个机器学习框架。它是一个开源框架,与 Python 结合使用,可以实现算法、深度学习应用程序等等。它用于研究和生产目的。

Keras 是作为 ONEIROS 项目(开放式神经电子智能机器人操作系统)研究的一部分而开发的。Keras 是一个用 Python 编写的深度学习 API。它是一个高级 API,具有高效的接口,有助于解决机器学习问题。它运行在 Tensorflow 框架之上。它旨在帮助快速进行实验。它提供了开发和封装机器学习解决方案所需的必要抽象和构建块。

它具有高度的可扩展性,并具有跨平台功能。这意味着 Keras 可以运行在 TPU 或 GPU 集群上。Keras 模型也可以导出以在 Web 浏览器或移动电话上运行。

Keras 已经存在于 Tensorflow 包中。可以使用以下代码行访问它。

import tensorflow
from tensorflow import keras

是的,Keras 模型可以像一个层一样被调用。Keras 函数式 API 有助于创建比使用顺序 API 创建的模型更灵活的模型。函数式 API 可以处理具有非线性拓扑的模型,可以共享层,并可以处理多个输入和输出。深度学习模型通常是一个包含多个层的定向无环图 (DAG)。函数式 API 有助于构建层图。

我们使用 Google Colaboratory 来运行以下代码。Google Colab 或 Colaboratory 帮助在浏览器上运行 Python 代码,无需任何配置,并可免费访问 GPU(图形处理单元)。Colaboratory 建立在 Jupyter Notebook 之上。以下是将 Keras 模型视为一层并使用 Python 调用的代码片段:

示例

Encoder_input = keras.Input(shape=(28, 28, 1), name=”original_img”)
print("Adding layers to the model")
x = layers.Conv2D(16, 3, activation="relu")(encoder_input)
x = layers.Conv2D(32, 3, activation="relu")(x)
x = layers.MaxPooling2D(3)(x)
x = layers.Conv2D(32, 3, activation="relu")(x)
x = layers.Conv2D(16, 3, activation="relu")(x)
print("Performing golbal max pooling")
encoder_output = layers.GlobalMaxPooling2D()(x)

print("Creating a model using the layers")
encoder = keras.Model(encoder_input, encoder_output, name="encoder")
print("More information about the model")
encoder.summary()
decoder_input = keras.Input(shape=(16,), name="encoded_img")
print("Reshaping the layers in the model")
x = layers.Reshape((4, 4, 1))(decoder_input)
x = layers.Conv2DTranspose(16, 3, activation="relu")(x)
x = layers.Conv2DTranspose(32, 3, activation="relu")(x)
x = layers.UpSampling2D(3)(x)
x = layers.Conv2DTranspose(16, 3, activation="relu")(x)
decoder_output = layers.Conv2DTranspose(1, 3, activation="relu")(x)
print("Creating a model using the layers")
decoder = keras.Model(decoder_input, decoder_output, name="decoder")
print("More information about the model")
decoder.summary()

autoencoder_input = keras.Input(shape=(28, 28, 1), name="img")
encoded_img = encoder(autoencoder_input)
decoded_img = decoder(encoded_img)
autoencoder = keras.Model(autoencoder_input, decoded_img, name="autoencoder")
print("More information about the model")
autoencoder.summary()

代码来源:https://tensorflowcn.cn/guide/keras/functional

输出

original_img (InputLayer)    [(None, 28, 28, 1)]       0
_________________________________________________________________
conv2d_28 (Conv2D)          (None, 26, 26, 16)       160
_________________________________________________________________
conv2d_29 (Conv2D)          (None, 24, 24, 32)       4640
_________________________________________________________________
max_pooling2d_7 (MaxPooling2 (None, 8, 8, 32)          0
_________________________________________________________________
conv2d_30 (Conv2D)          (None, 6, 6, 32)          9248
_________________________________________________________________
conv2d_31 (Conv2D)          (None, 4, 4, 16)          4624
_________________________________________________________________
global_max_pooling2d_3       (Glob (None, 16)          0
=================================================================
Total params: 18,672
Trainable params: 18,672
Non-trainable params: 0
_________________________________________________________________
Reshaping the layers in the model
Creating a model using the layers
More information about the model
Model: "decoder"
_________________________________________________________________
Layer (type)                Output Shape             Param #
=================================================================
encoded_img (InputLayer)    [(None, 16)]             0
_________________________________________________________________
reshape_1 (Reshape)          (None, 4, 4, 1)         0
_________________________________________________________________
conv2d_transpose_4 (Conv2DTr (None, 6, 6, 16)       160
_________________________________________________________________
conv2d_transpose_5 (Conv2DTr (None, 8, 8, 32)       4640
_________________________________________________________________
up_sampling2d_1 (UpSampling2 (None, 24, 24, 32)       0
_________________________________________________________________
conv2d_transpose_6 (Conv2DTr (None, 26, 26, 16)      4624
_________________________________________________________________
conv2d_transpose_7 (Conv2DTr (None, 28, 28, 1)       145
=================================================================
Total params: 9,569
Trainable params: 9,569
Non-trainable params: 0
_________________________________________________________________
More information about the model
Model: "autoencoder"
_________________________________________________________________
Layer (type)             Output Shape          Param #
=================================================================
img (InputLayer)       [(None, 28, 28, 1)]       0
_________________________________________________________________
encoder (Functional)    (None, 16)             18672
_________________________________________________________________
decoder (Functional)    (None, 28, 28, 1)       9569
=================================================================
Total params: 28,241
Trainable params: 28,241
Non-trainable params: 0
_________________________________________________________________

解释

  • 任何模型都可以通过在另一个层的“输入”或输出上调用它来作为一层。

  • 调用模型时,架构将被重用。

  • 此外,权重也将被重用。

  • 可以使用编码器模型和解码器模型创建自动编码器模型。

  • 这两个模型通过两次调用链接在一起以获得自动编码器模型。

更新于:2021年1月18日

683 次浏览

启动你的职业生涯

完成课程获得认证

开始学习
广告