如何使用 Python 和 Keras 训练模型?


TensorFlow 是 Google 提供的一个机器学习框架。它是一个开源框架,与 Python 结合使用,可以实现算法、深度学习应用程序等等。它用于研究和生产目的。它具有优化技术,有助于快速执行复杂的数学运算。

可以使用以下代码行在 Windows 上安装 'tensorflow' 包:

pip install tensorflow

张量是 TensorFlow 中使用的一种数据结构。它有助于连接数据流图中的边。此数据流图称为“数据流图”。张量只不过是多维数组或列表。

Keras 是作为 ONEIROS(开放式神经电子智能机器人操作系统)项目研究的一部分开发的。Keras 是一个用 Python 编写的深度学习 API。它是一个高级 API,具有高效的接口,有助于解决机器学习问题。它运行在 TensorFlow 框架之上。它旨在帮助快速进行实验。它提供开发和封装机器学习解决方案所必需的基本抽象和构建块。

Keras 已经存在于 TensorFlow 包中。可以使用以下代码行访问它。

import tensorflow
from tensorflow import keras

Keras 函数式 API 有助于创建比使用顺序 API 创建的模型更灵活的模型。函数式 API 可以处理具有非线性拓扑的模型,可以共享层,并可以处理多个输入和输出。深度学习模型通常是有向无环图 (DAG),包含多个层。函数式 API 有助于构建层图。

我们正在使用 Google Colaboratory 来运行以下代码。Google Colab 或 Colaboratory 有助于在浏览器上运行 Python 代码,无需任何配置,并可免费访问 GPU(图形处理单元)。Colaboratory 建立在 Jupyter Notebook 之上。以下是训练模型的代码片段:

示例

print("Sample input data")
title_data = np.random.randint(num_words, size=(1280, 10))
body_data = np.random.randint(num_words, size=(1280, 100))
tags_data = np.random.randint(2, size=(1280, num_tags)).astype("float32")
print("Sample target data")
priority_targets = np.random.random(size=(1280, 1))
dept_targets = np.random.randint(2, size=(1280, num_classes))
print("The model is being fit to the data")
model.fit(
   {"title": title_data, "body": body_data, "tags": tags_data},
   {"priority": priority_targets, "class": dept_targets},
   epochs=2,
   batch_size=32,
)

代码来源:https://tensorflowcn.cn/guide/keras/functional

输出

Sample input data
Sample target data
The model is being fit to the data
Epoch 1/2
40/40 [==============================] - 5s 43ms/step - loss: 1.2738 - priority_loss: 0.7043 -
class_loss: 2.8477
Epoch 2/2
40/40 [==============================] - 2s 44ms/step - loss: 1.2720 - priority_loss: 0.6997 -
class_loss: 2.8612
<tensorflow.python.keras.callbacks.History at 0x7f48d0809e80>

Learn Python in-depth with real-world projects through our Python certification course. Enroll and become a certified expert to boost your career.

解释

  • 生成示例输入和目标数据。

  • 通过传递输入和目标的 NumPy 数组来训练模型。

更新于:2021年1月18日

98 次浏览

启动您的职业生涯

完成课程获得认证

开始学习
广告