如何使用 Keras 和 Python 程序绘制模型?
Keras 在希腊语中意为“角”。Keras 是作为 ONEIROS 项目(开放式神经电子智能机器人操作系统)研究的一部分而开发的。Keras 是一个用 Python 编写的深度学习 API。它是一个高级 API,具有高效的接口,有助于解决机器学习问题。
它运行在 TensorFlow 框架之上。它的构建是为了帮助以快速的方式进行实验。它提供了开发和封装机器学习解决方案所必需的基本抽象和构建块。
它具有高度的可扩展性,并具有跨平台功能。这意味着 Keras 可以运行在 TPU 或 GPU 集群上。Keras 模型还可以导出到 Web 浏览器或手机上运行。
Keras 已经存在于 TensorFlow 包中。可以使用以下代码行访问它。
import tensorflow from tensorflow import keras
Keras 函数式 API 有助于创建比使用顺序 API 创建的模型更灵活的模型。函数式 API 可以处理具有非线性拓扑的模型,可以共享层,并处理多个输入和输出。深度学习模型通常是一个包含多个层的定向无环图 (DAG)。函数式 API 有助于构建层图。
我们正在使用 Google Colaboratory 来运行以下代码。Google Colab 或 Colaboratory 帮助在浏览器上运行 Python 代码,无需任何配置,并且可以免费访问 GPU(图形处理单元)。Colaboratory 构建在 Jupyter Notebook 之上。
示例
print("The model is being plotted") keras.utils.plot_model(model, "my_resnet.png", show_shapes=True)
代码来源 - https://tensorflowcn.cn/guide/keras/functional
输出
解释
“plot_model”方法用于将模型的各层作为层图绘制。
广告