计算到达第 n 级台阶的方法
有 n 个台阶。一个人将从第一级台阶走到第 n 级台阶。也提供了此人每一步最多可以跨越的台阶数。在此信息的基础上,我们必须找到到达第 n 级台阶的可能途径。
假设一个人每一步最多可以跨两个台阶。因此我们可找到递归关系来解决此问题。一个人可以从第 n-1 个台阶或从第 n-2 个台阶走到第 n 个台阶。因此 ways(n) = ways(n-1) + ways(n-2)。
输入和输出
Input: The number of stairs, say 10 the maximum number of stairs that can be jumped in one step, say 2 Output: Enter number of stairs: 10 Enter max stair a person can climb: 2 Number of ways to reach: 89
算法
stairClimpWays(stair, max)
输入 − 台阶数,单次跨越的最大台阶数。
输出 − 能够到达的可能途径数。
Begin define array count of size same as stair number count[0] := 1 count[0] := 1 for i := 2 to stair -1, do count[i] := 0 for j = 1 to i and j <= max; do count[i] := count[i] + count[i - j] done done return count[stair - 1] End
示例
#include<iostream> using namespace std; int stairClimbWays(int stair, int max) { int count[stair]; //fill the result stair using bottom up manner count[0] = 1; //when there are 0 or 1 stair, 1 way to climb count[1] = 1; for (int i=2; i<stair; i++) { //for stair 2 to higher count[i] = 0; for(int j=1; j<=max && j<=i; j++) count[i] += count[i-j]; } return count[stair-1]; } int countWays(int stair, int max) { //person can climb 1,2,...max stairs at a time return stairClimbWays(stair+1, max); } int main () { int stair, max; cout << "Enter number of stairs: "; cin >> stair; cout << "Enter max stair a person can climb: "; cin >> max; cout << "Number of ways to reach: " << countWays(stair, max); }
输出
Enter number of stairs: 10 Enter max stair a person can climb: 2 Number of ways to reach: 89
广告