C++ 实现 AVL 树程序
AVL 树是一种自平衡二叉搜索树,其中所有节点的左右子树的高度差不能超过 1。
树旋转是一种不改变元素顺序的操作,它改变了 AVL 树的结构。它将一个节点向上移动,另一个节点向下移动。它用于改变树的形状,并通过将较小的子树向下移动,较大的子树向上移动来降低树的高度,从而提高许多树操作的性能。旋转的方向取决于树节点移动到的方向,也有人说它取决于哪个子节点取代了根节点的位置。这是一个用 C++ 实现 AVL 树的程序。
函数描述
height(avl *):计算给定 AVL 树的高度。
difference(avl *):计算给定树的子树高度差。
avl *rr_rotat(avl *):右-右旋转是右旋转后接右旋转的组合。
avl *ll_rotat(avl *):左-左旋转是左旋转后接左旋转的组合。
avl *lr_rotat(avl*):左-右旋转是左旋转后接右旋转的组合。
avl *rl_rotat(avl *):它是右旋转后接左旋转的组合。
avl * balance(avl *): 通过获取平衡因子来对树执行平衡操作
avl * insert(avl*, int):执行插入操作。使用此函数在树中插入值。
show(avl*, int): 显示树的值。
inorder(avl *):以中序方式遍历树。
preorder(avl *):以先序方式遍历树。
postorder(avl*):以后序方式遍历树。
示例代码
#include<iostream> #include<cstdio> #include<sstream> #include<algorithm> #define pow2(n) (1 << (n)) using namespace std; struct avl { int d; struct avl *l; struct avl *r; }*r; class avl_tree { public: int height(avl *); int difference(avl *); avl *rr_rotat(avl *); avl *ll_rotat(avl *); avl *lr_rotat(avl*); avl *rl_rotat(avl *); avl * balance(avl *); avl * insert(avl*, int); void show(avl*, int); void inorder(avl *); void preorder(avl *); void postorder(avl*); avl_tree() { r = NULL; } }; int avl_tree::height(avl *t) { int h = 0; if (t != NULL) { int l_height = height(t->l); int r_height = height(t->r); int max_height = max(l_height, r_height); h = max_height + 1; } return h; } int avl_tree::difference(avl *t) { int l_height = height(t->l); int r_height = height(t->r); int b_factor = l_height - r_height; return b_factor; } avl *avl_tree::rr_rotat(avl *parent) { avl *t; t = parent->r; parent->r = t->l; t->l = parent; cout<<"Right-Right Rotation"; return t; } avl *avl_tree::ll_rotat(avl *parent) { avl *t; t = parent->l; parent->l = t->r; t->r = parent; cout<<"Left-Left Rotation"; return t; } avl *avl_tree::lr_rotat(avl *parent) { avl *t; t = parent->l; parent->l = rr_rotat(t); cout<<"Left-Right Rotation"; return ll_rotat(parent); } avl *avl_tree::rl_rotat(avl *parent) { avl *t; t = parent->r; parent->r = ll_rotat(t); cout<<"Right-Left Rotation"; return rr_rotat(parent); } avl *avl_tree::balance(avl *t) { int bal_factor = difference(t); if (bal_factor > 1) { if (difference(t->l) > 0) t = ll_rotat(t); else t = lr_rotat(t); } else if (bal_factor < -1) { if (difference(t->r) > 0) t = rl_rotat(t); else t = rr_rotat(t); } return t; } avl *avl_tree::insert(avl *r, int v) { if (r == NULL) { r = new avl; r->d = v; r->l = NULL; r->r = NULL; return r; } else if (v< r->d) { r->l = insert(r->l, v); r = balance(r); } else if (v >= r->d) { r->r = insert(r->r, v); r = balance(r); } return r; } void avl_tree::show(avl *p, int l) { int i; if (p != NULL) { show(p->r, l+ 1); cout<<" "; if (p == r) cout << "Root -> "; for (i = 0; i < l&& p != r; i++) cout << " "; cout << p->d; show(p->l, l + 1); } } void avl_tree::inorder(avl *t) { if (t == NULL) return; inorder(t->l); cout << t->d << " "; inorder(t->r); } void avl_tree::preorder(avl *t) { if (t == NULL) return; cout << t->d << " "; preorder(t->l); preorder(t->r); } void avl_tree::postorder(avl *t) { if (t == NULL) return; postorder(t ->l); postorder(t ->r); cout << t->d << " "; } int main() { int c, i; avl_tree avl; while (1) { cout << "1.Insert Element into the tree" << endl; cout << "2.show Balanced AVL Tree" << endl; cout << "3.InOrder traversal" << endl; cout << "4.PreOrder traversal" << endl; cout << "5.PostOrder traversal" << endl; cout << "6.Exit" << endl; cout << "Enter your Choice: "; cin >> c; switch (c) { case 1: cout << "Enter value to be inserted: "; cin >> i; r = avl.insert(r, i); break; case 2: if (r == NULL) { cout << "Tree is Empty" << endl; continue; } cout << "Balanced AVL Tree:" << endl; avl.show(r, 1); cout<<endl; break; case 3: cout << "Inorder Traversal:" << endl; avl.inorder(r); cout << endl; break; case 4: cout << "Preorder Traversal:" << endl; avl.preorder(r); cout << endl; break; case 5: cout << "Postorder Traversal:" << endl; avl.postorder(r); cout << endl; break; case 6: exit(1); break; default: cout << "Wrong Choice" << endl; } } return 0; }
输出
1.Insert Element into the tree 2.show Balanced AVL Tree 3.InOrder traversal 4.PreOrder traversal 5.PostOrder traversal 6.Exit Enter your Choice: 1 Enter value to be inserted: 13 1.Insert Element into the tree 2.show Balanced AVL Tree 3.InOrder traversal 4.PreOrder traversal 5.PostOrder traversal 6.Exit Enter your Choice: 1 Enter value to be inserted: 10 1.Insert Element into the tree 2.show Balanced AVL Tree 3.InOrder traversal 4.PreOrder traversal 5.PostOrder traversal 6.Exit Enter your Choice: 1 Enter value to be inserted: 15 1.Insert Element into the tree 2.show Balanced AVL Tree 3.InOrder traversal 4.PreOrder traversal 5.PostOrder traversal 6.Exit Enter your Choice: 1 Enter value to be inserted: 5 1.Insert Element into the tree 2.show Balanced AVL Tree 3.InOrder traversal 4.PreOrder traversal 5.PostOrder traversal 6.Exit Enter your Choice: 1 Enter value to be inserted: 11 1.Insert Element into the tree 2.show Balanced AVL Tree 3.InOrder traversal 4.PreOrder traversal 5.PostOrder traversal 6.Exit Enter your Choice: 1 Enter value to be inserted: 4 Left-Left Rotation1.Insert Element into the tree 2.show Balanced AVL Tree 3.InOrder traversal 4.PreOrder traversal 5.PostOrder traversal 6.Exit Enter your Choice: 1 Enter value to be inserted: 8 1.Insert Element into the tree 2.show Balanced AVL Tree 3.InOrder traversal 4.PreOrder traversal 5.PostOrder traversal 6.Exit Enter your Choice: 1 Enter value to be inserted: 16 1.Insert Element into the tree 2.show Balanced AVL Tree 3.InOrder traversal 4.PreOrder traversal 5.PostOrder traversal 6.Exit Enter your Choice: 3 Inorder Traversal: 4 5 8 10 11 13 15 16 1.Insert Element into the tree 2.show Balanced AVL Tree 3.InOrder traversal 4.PreOrder traversal 5.PostOrder traversal 6.Exit Enter your Choice: 4 Preorder Traversal: 10 5 4 8 13 11 15 16 1.Insert Element into the tree 2.show Balanced AVL Tree 3.InOrder traversal 4.PreOrder traversal 5.PostOrder traversal 6.Exit Enter your Choice: 5 Postorder Traversal: 4 8 5 11 16 15 13 10 1.Insert Element into the tree 2.show Balanced AVL Tree 3.InOrder traversal 4.PreOrder traversal 5.PostOrder traversal 6.Exit Enter your Choice: 1 Enter value to be inserted: 14 1.Insert Element into the tree 2.show Balanced AVL Tree 3.InOrder traversal 4.PreOrder traversal 5.PostOrder traversal 6.Exit Enter your Choice: 1 Enter value to be inserted: 3 1.Insert Element into the tree 2.show Balanced AVL Tree 3.InOrder traversal 4.PreOrder traversal 5.PostOrder traversal 6.Exit Enter your Choice: 1 Enter value to be inserted: 7 1.Insert Element into the tree 2.show Balanced AVL Tree 3.InOrder traversal 4.PreOrder traversal 5.PostOrder traversal 6.Exit Enter your Choice: 1 Enter value to be inserted: 9 1.Insert Element into the tree 2.show Balanced AVL Tree 3.InOrder traversal 4.PreOrder traversal 5.PostOrder traversal 6.Exit Enter your Choice: 1 Enter value to be inserted: 52 Right-Right Rotation 1.Insert Element into the tree 2.show Balanced AVL Tree 3.InOrder traversal 4.PreOrder traversal 5.PostOrder traversal 6.Exit Enter your Choice: 6
广告