用于实现笛卡尔树的 C++ 程序
这是一个用于实现笛卡尔树的 C++ 程序。
算法
Begin class CarTree to declare the functions: min() = To find index of the minimum element in array: if (arr[i] < min) min = arr[i] minind = i inorder() = For inorder traversal of the tree: If tree is empty Then return inorder (node->l) Print the root as node->d inorder (node->r) End
示例代码
#include <iostream>
#include <cstdio>
#include <cstdlib>
using namespace std;
struct nod//node declaration {
int d;
struct nod* l;
struct nod* r;
};
class CarTree {
public://declare the functions
nod *newNode (int);
int min(int [], int, int);
nod *buildTree (int [], int, int);
void inorder (nod* node);
void show(nod *, int);
CTree()
{}
};
int CarTree::min(int arr[], int s, int e) {
int i, min = arr[s], minind = s;
for (i = s + 1; i <= e; i++) {
if (arr[i] < min) {
min = arr[i];
minind = i;
}
}
return minind;
}
nod *CarTree::buildTree (int inorder[], int s, int e)//build the cratesian tree {
if (s >e)
return NULL;
int i = min(inorder, s, e);
nod *r = newNode(inorder[i]);
if (s == e)
return r;
r->l = buildTree(inorder, s, i - 1);//call the function recursively for left child
r->r = buildTree(inorder, i + 1, e);//call the function recursively for right child
return r;
}
void CarTree::inorder (struct nod* node) {
if (node == NULL)
return;
inorder (node->l);
cout<<node->d<<" ";
inorder (node->r);
}
void CarTree::show(nod *ptr, int level)//show the tree {
int i;
if(ptr == NULL)
return;
if (ptr != NULL) {
show(ptr->r, level + 1);
cout<<endl;
for (i = 0;i < level;i++)
cout<<" ";
cout<<ptr->d;
show(ptr->l, level + 1);
}
}
nod *CarTree::newNode (int d)//creation of new node {
nod* t = new nod;
t->d = d;
t->l = NULL;
t->r = NULL;
return t;
}
int main() {
CarTree ct;
int i, n;
cout<<"Enter number of elements to be inserted: ";
cin>>n;
int a[n];
for (i = 0; i < n; i++) {
cout<<"Enter Element "<<i + 1<<" : ";
cin>>a[i];
}
nod *r = ct.buildTree(a, 0, n - 1);
cout<<"Cartesian tree Structure: "<<endl;
ct.show(r,1);
cout<<endl;
cout<<"\n Inorder traversal of the tree \n"<<endl;
ct.inorder(r);
cout<<endl;
return 0;
}输出
Enter number of elements to be inserted: 10 Enter Element 1 : 10 Enter Element 2 : 30 Enter Element 3 : 20 Enter Element 4 : 40 Enter Element 5 : 50 Enter Element 6 : 70 Enter Element 7 : 60 Enter Element 8 : 80 Enter Element 9 : 100 Enter Element 10 : 112 Cartesian tree Structure: 112 100 80 60 70 50 40 20 30 10 Inorder traversal of the tree 10 30 20 40 50 70 60 80 100 112
广告
数据结构
网络
RDBMS
操作系统
Java
iOS
HTML
CSS
Android
Python
C 编程
C++
C#
MongoDB
MySQL
Javascript
PHP