使用 C++ 代码实现最小堆
二叉堆是一种完全二叉树,要么是最小堆,要么是最大堆。在最大二叉堆中,根处的键必须是二叉堆中所有键中的最大值。对于二叉树中的所有节点,此属性必须递归为 true。最小二叉堆类似于最小堆。
算法
对于 min_heap()
Begin Declare function min_heap(int *a, int m, int n) Declare j, t of the integer datatype. Initialize t = a[m]. j = 2 * m; while (j <= n) do if (j < n && a[j+1] < a[j]) then j = j + 1 if (t < a[j]) then break else if (t >= a[j]) then a[j / 2] = a[j] j = 2 * j a[j/2] = t return End.
对于 build_minheap
Begin Declare function build_minheap(int *a,int n). Declare k of the integer datatype. for(k = n/2; k >= 1; k--) Call function min_heap(a,k,n) End.
示例
#include <iostream> #include <conio.h> using namespace std; void min_heap(int *a, int m, int n){ int j, t; t= a[m]; j = 2 * m; while (j <= n) { if (j < n && a[j+1] < a[j]) j = j + 1; if (t < a[j]) break; else if (t >= a[j]) { a[j/2] = a[j]; j = 2 * j; } } a[j/2] = t; return; } void build_minheap(int *a, int n) { int k; for(k = n/2; k >= 1; k--) { min_heap(a,k,n); } } int main() { int n, i; cout<<"enter no of elements of array\n"; cin>>n; int a[30]; for (i = 1; i <= n; i++) { cout<<"enter element"<<" "<<(i)<<endl; cin>>a[i]; } build_minheap(a, n); cout<<"Min Heap\n"; for (i = 1; i <= n; i++) { cout<<a[i]<<endl; } getch(); }
输出
enter no of elements of array 5 enter element 1 7 enter element 2 6 enter element 3 2 enter element 4 1 enter element 5 4 Min Heap 1 4 2 6 7
广告