在 Java 中查找平衡 BST 中具有给定和的配对
概念
针对给定的平衡二叉搜索树和目标和,我们编写一个函数,如果存在和等于目标和的配对,则返回 true,否则返回 false。在这种情况下,期望的时间复杂度为 O(n),并且只能实现 O(Logn) 的额外空间。在此,不允许对二叉搜索树进行任何修改。我们需要注意的是,平衡 BST 的高度始终为 O(Logn)。
示例
方法
根据蛮力解决方案,我们考虑 BST 中的每一对,并验证其和是否等于 X。此解决方案的时间复杂度将为 O(n^2)。
现在,一个更好的解决方案是构建一个辅助数组,并将 BST 的中序遍历存储在数组中。在这种情况下,数组将被排序,因为 BST 的中序遍历始终生成排序数据。因此,在中序遍历可用后,我们可以在 O(n) 时间内配对。请记住,此解决方案在 O(n) 时间内工作,但需要 O(n) 的辅助空间。
示例
// Java code to find a pair with given sum // in a Balanced BST import java.util.ArrayList; // A binary tree node class Node1 { int data1; Node1 left1, right1; Node1(int d){ data1 = d; left1 = right1 = null; } } public class BinarySearchTree { // Indicates root of BST Node1 root1; // Indicates constructor BinarySearchTree(){ root1 = null; } // Indicates inorder traversal of the tree void inorder(){ inorderUtil1(this.root1); } // Indicates utility function for inorder traversal of the tree void inorderUtil1(Node1 node1){ if (node1 == null) return; inorderUtil1(node1.left1); System.out.print(node1.data1 + " "); inorderUtil1(node1.right1); } // Now this method mainly calls insertRec() void insert(int key1){ root1 = insertRec1(root1, key1); } /* Indicates a recursive function to insert a new key in BST */ Node1 insertRec1(Node1 root1, int data1){ /* So if the tree is empty, return a new node */ if (root1 == null) { root1 = new Node1(data1); return root1; } /* Otherwise, recur down the tree */ if (data1 < root1.data1) root1.left1 = insertRec1(root1.left1, data1); else if (data1 > root1.data1) root1.right1 = insertRec1(root1.right1, data1); return root1; } // Indicates method that adds values of given BST into ArrayList // and hence returns the ArrayList ArrayList<Integer> treeToList(Node1 node1, ArrayList<Integer> list1){ // Indicates Base Case if (node1 == null) return list1; treeToList(node1.left1, list1); list1.add(node1.data1); treeToList(node1.right1, list1); return list1; } // Indicates method that checks if there is a pair present boolean isPairPresent(Node1 node1, int target1){ // Now this list a1 is passed as an argument // in treeToList method // which is later on filled by the values of BST ArrayList<Integer> a1 = new ArrayList<>(); // Now a2 list contains all the values of BST // returned by treeToList method ArrayList<Integer> a2 = treeToList(node1, a1); int start1 = 0; // Indicates starting index of a2 int end1 = a2.size() - 1; // Indicates ending index of a2 while (start1 < end1) { if (a2.get(start1) + a2.get(end1) == target1) // Target Found!{ System.out.println("Pair Found: " + a2.get(start1) + " + " + a2.get(end1) + " " + "= " + target1); return true; } if (a2.get(start1) + a2.get(end1) > target1) // decrements end { end1--; } if (a2.get(start1) + a2.get(end1) < target1) // increments start { start1++; } } System.out.println("No such values are found!"); return false; } // Driver function public static void main(String[] args){ BinarySearchTree tree1 = new BinarySearchTree(); /* 16 / \ 11 21 / \ / \ 9 13 17 26 */ tree1.insert(16); tree1.insert(11); tree1.insert(21); tree1.insert(9); tree1.insert(13); tree1.insert(17); tree1.insert(26); tree1.isPairPresent(tree1.root1, 34); } }
输出
Pair Found: 13 + 21 = 34
广告