如何使用 C++ 中的 OpenCV 实时检测人脸?


实时检测人脸与在静止图片中检测人脸类似。 实时人脸检测唯一的区别在于,我们必须采用视频流方式运行程序。在此程序中,我们使用了 'VideoCapture()' 函数。此函数从其他摄像头捕获视频,并将帧临时存储在分配给它的矩阵中。此函数从默认摄像头捕获视频,并将帧临时存储在 'real_time' 矩阵中。

以下程序对实时人脸进行检测:

示例

#include<iostream>
#include<opencv2/highgui/highgui.hpp>
#include<opencv2/imgproc/imgproc.hpp>
//This header includes definition of 'rectangle()' function//
#include<opencv2/objdetect/objdetect.hpp>
//This header includes the definition of Cascade Classifier//
#include<string>
using namespace std;
using namespace cv;
int main(int argc, char** argv) {
   Mat video_stream;//Declaring a matrix hold frames from video stream//
   VideoCapture real_time(0);//capturing video from default webcam//
   namedWindow("Face Detection");//Declaring an window to show the result//
   string trained_classifier_location = "C:/opencv/sources/data/haarcascades/haarcascade_frontalface_alt.xml";//Defining the location our XML Trained Classifier in a string//
   CascadeClassifier faceDetector;//Declaring an object named 'face detector' of CascadeClassifier class//
   faceDetector.load(trained_classifier_location);//loading the XML trained classifier in the object//
   vector<Rect>faces;//Declaring a rectangular vector named faces//
   while (true) {
      faceDetector.detectMultiScale(video_stream, faces, 1.1, 4, CASCADE_SCALE_IMAGE, Size(30, 30));//Detecting the faces in 'image_with_humanfaces' matrix//
      real_time.read(video_stream);// reading frames from camera and loading them in 'video_stream' Matrix//
      for (int i = 0; i < faces.size(); i++){ //for locating the face
         Mat faceROI = video_stream(faces[i]);//Storing face in the matrix//
         int x = faces[i].x;//Getting the initial row value of face rectangle's starting point//
         int y = faces[i].y;//Getting the initial column value of face rectangle's starting point//
         int h = y + faces[i].height;//Calculating the height of the rectangle//
         int w = x + faces[i].width;//Calculating the width of the rectangle//
         rectangle(video_stream, Point(x, y), Point(w, h), Scalar(255, 0, 255), 2, 8, 0);//Drawing a rectangle using around the faces//
      }
      imshow("Face Detection", video_stream);
      //Showing the detected face//
      if (waitKey(10) == 27){ //wait time for each frame is 10 milliseconds//
         break;
      }
   }
   return 0;
}

输出

更新时间: 2021-03-10

2K+ 人看过

开启您的职业生涯

通过完成课程获取认证

开始
广告