如何使用 OpenCV 在 C++ 中检测颜色?
我们将了解如何检测特定颜色并根据颜色追踪物体。颜色检测和基于颜色检测的追踪系统的性能均依赖环境。
如果更改房间光线或更改背景颜色,这将显著影响颜色检测。
以下程序演示如何使用 OpenCV 在 C++ 中检测颜色。
示例
#include<iostream> #include<opencv2/highgui/highgui.hpp> #include<opencv2/imgproc/imgproc.hpp> using namespace std; using namespace cv; int main(int argc, char** argv) { VideoCapture video_load(0);//capturing video from default camera// namedWindow("Adjust");//declaring window to show the image// int Hue_Lower_Value = 0;//initial hue value(lower)// int Hue_Lower_Upper_Value = 22;//initial hue value(upper)// int Saturation_Lower_Value = 0;//initial saturation(lower)// int Saturation_Upper_Value = 255;//initial saturation(upper)// int Value_Lower = 0;//initial value (lower)// int Value_Upper = 255;//initial saturation(upper)// createTrackbar("Hue_Lower", "Adjust", &Hue_Lower_Value, 179);//track-bar for lower hue// createTrackbar("Hue_Upper", "Adjust", &Hue_Lower_Upper_Value, 179);//track-bar for lower-upper hue// createTrackbar("Sat_Lower", "Adjust", &Saturation_Lower_Value, 255);//track-bar for lower saturation// createTrackbar("Sat_Upper", "Adjust", &Saturation_Upper_Value, 255);//track-bar for higher saturation// createTrackbar("Val_Lower", "Adjust", &Value_Lower, 255);//track-bar for lower value// createTrackbar("Val_Upper", "Adjust", &Value_Upper, 255);//track-bar for upper value// while (1) { Mat actual_Image;//matrix to load actual image// bool temp = video_load.read(actual_Image);//loading actual image to matrix from video stream// Mat convert_to_HSV;//declaring a matrix to store converted image// cvtColor(actual_Image, convert_to_HSV, COLOR_BGR2HSV);//converting BGR image to HSV and storing it in convert_to_HSV matrix// Mat detection_screen;//declaring matrix for window where object will be detected// inRange(convert_to_HSV,Scalar(Hue_Lower_Value,Saturation_Lower_Value, Value_Lower),Scalar(Hue_Lower_Upper_Value,Saturation_Upper_Value, Value_Upper), detection_screen);//applying track-bar modified value of track-bar// erode(detection_screen, detection_screen, getStructuringElement(MORPH_ELLIPSE, Size(5, 5)));//morphological opening for removing small objects from foreground// dilate(detection_screen, detection_screen, getStructuringElement(MORPH_ELLIPSE, Size(5, 5)));//morphological opening for removing small object from foreground// dilate(detection_screen, detection_screen, getStructuringElement(MORPH_ELLIPSE, Size(5, 5)));//morphological closing for filling up small holes in foreground// erode(detection_screen, detection_screen, getStructuringElement(MORPH_ELLIPSE, Size(5, 5)));//morphological closing for filling up small holes in foreground// imshow("Threesholded Image", detection_screen);//showing detected object// imshow("Original", actual_Image);//showing actual image// if (waitKey(30) == 27){ //if esc is press break the loop// break; } } return 0; }
输出
广告