通过交替添加字符合并两个字符串,得到字典序最大的字符串
字典序是指一种算法,可以用来按字母顺序排列给定的单词,这与字典中使用的概念相同。通过一次取一个字符合并两个字符串,可以得到最大的字符串,方法是按降序排列字母,同时记住元素的顺序。
问题陈述
在本问题中,我们需要找到通过合并两个给定字符串得到的字典序最大的字符串。要理解这个问题,我们应该了解用于按字典序排列字符串的基本概念。
让我们通过一些例子来理解这个问题。
输入
string1 = "cabaa", string2 = "bcaaa"
输出
"cbcabaaaaa"
解释
获得字典序最大的合并字符串的一种方法是:
从字符串1中取“c”并将其添加到初始空字符串中,这使得字符串1变为“abaa”,字符串2变为“bcaaa”。
现在,从字符串2中取“b”,使合并字符串变为“cb”,字符串1变为“abaa”,字符串2变为“caaa”。
再次从字符串2中取“c”,使合并字符串变为“cbc”,字符串1变为“abaa”,字符串2变为“aaa”。
从字符串1中取“a”,使合并字符串变为“cbca”,字符串1变为“baa”,字符串2变为“aaa”。
再次从字符串1中取“b”,使合并字符串变为“cbcab”,字符串1变为“aa”,字符串2变为“aaa”。
现在,将字符串1和字符串2中剩余的“a”全部添加到合并字符串中,得到最终结果。
输入
string1 = "baa", string2 = "bcaac"
输出
"bcbaacaa"
解释
这里,为了得到字典序最大的合并字符串,我们将从字符串2中取“b”,然后再次从字符串2中取“c”,使其变为“bc”。现在,我们将从字符串1中取“b”,使合并字符串变为“bcb”,其余我们将从字符串2中取“aac”,从字符串1中取“aa”,使合并字符串变为“bcbaacaa”,作为预期输出。
问题解释
让我们尝试理解这个问题并找到解决方案。我们可以通过两种方法解决这个问题:一种是使用递归,另一种是使用迭代,其中我们将使用贪婪指针的概念。贪婪指针是在我们为获得整体最优解而采取小步最优选择时使用的指针。
方法1 - 暴力递归解法
这里,我们将使用递归函数的概念,其中基准条件定义为当两个字符串中的任何一个的大小变为零时。然后,我们将比较剩余字符串的第一个字符,返回较大的字符及其子字符串的函数调用。
示例
现在,让我们在不同的编程语言中实现上述方法:C、C++、Java 和 Python:
#include<bits/stdc++.h>
using namespace std;
// Make a function to get the Lexicographically largest possible string
string helper(string word1, string word2) {
// base condition for recursion
if (word1.empty() || word2.empty()){
return word1 + word2;
}
// Check the character from which string would be chosen first among both strings
if (word1 > word2) {
return word1[0] + helper(word1.substr(1), word2);
}
// return the final answer which would provide optimal result
return word2[0] + helper(word1, word2.substr(1));
}
int main() {
// Give two strings by the user
string string1 = "cabaa";
string string2 = "bcaaa";
// Call the helper function
cout << "The lexicographically largest possible string is: " << helper(string1, string2);
return 0;
}
输出
The lexicographically largest possible string is: cbcabaaaaa
public class Main {
// Function to get the lexicographically largest possible string
public static String helper(String word1, String word2) {
// Base condition for recursion
if (word1.isEmpty() || word2.isEmpty()) {
return word1 + word2;
}
// Check the character from which string would be chosen first among both strings
if (word1.compareTo(word2) > 0) {
return word1.charAt(0) + helper(word1.substring(1), word2);
}
// Return the final answer which would provide the optimal result
return word2.charAt(0) + helper(word1, word2.substring(1));
}
public static void main(String[] args) {
// Provide two strings
String string1 = "cabaa";
String string2 = "bcaaa";
// Call the helper function
String result = helper(string1, string2);
// Print the lexicographically largest possible string
System.out.println("The lexicographically largest possible string is: " + result);
}
}
输出
The lexicographically largest possible string is: cbcabaaaaa
# Function to get the lexicographically largest possible string
def helper(word1, word2):
# Base condition for recursion
if not word1 or not word2:
return word1 + word2
# Check the character from which string would be chosen first among both strings
if word1 > word2:
return word1[0] + helper(word1[1:], word2)
# Return the final answer which would provide the optimal result
return word2[0] + helper(word1, word2[1:])
# Main function
def main():
# Provide two strings
string1 = "cabaa"
string2 = "bcaaa"
# Call the helper function
result = helper(string1, string2)
# Print the lexicographically largest possible string
print("The lexicographically largest possible string is:", result)
if __name__ == "__main__":
main()
输出
The lexicographically largest possible string is: cbcabaaaaa
上述代码的复杂度
时间复杂度 - O(m*n);其中“m”和“n”是用户提供的两个字符串的初始输入大小。这里有一个内置的递归堆栈,将用于遍历两个字符串中所有给定的元素。
空间复杂度 - O(1);虽然这里使用了内置的递归堆栈,但它仍然不会占用空间,因为它用作运行时内存。
方法2 - 使用贪婪指针技术的最佳解法
算法
运行一个循环,直到我们到达第一个字符串的大小(对于变量“i”)或者第二个字符串的大小(对于变量“j”)。
检查哪个字符根据ASCII码排在后面,我们将把该字符添加到合并字符串中。
到达循环的停止条件后,我们将检查“i”或“j”中哪个到达了其限制。
我们将运行一个单独的循环以使另一个循环到达其停止点,以便我们可以将两个字符串的字符添加到合并字符串中。
示例
现在,让我们在不同的编程语言中实现上述方法:C、C++、Java 和 Python:
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
// Function to get the lexicographically largest possible string
char* helper(const char* word1, const char* word2) {
int n = strlen(word1);
int m = strlen(word2);
char* ans = (char*)malloc(n + m + 1); // Allocate memory for the result string
int i = 0, j = 0, k = 0;
while (i < n && j < m) {
// Check which character is maximum
if (strcmp(&word1[i], &word2[j]) > 0) {
ans[k++] = word1[i++];
} else {
ans[k++] = word2[j++];
}
}
// If the condition for 'i' was not satisfied, append the rest of the first string to the final answer
while (i < n) {
ans[k++] = word1[i++];
}
// If the condition for 'j' was not satisfied, append the rest of the second string to the final answer
while (j < m) {
ans[k++] = word2[j++];
}
ans[k] = '\0'; // Null-terminate the result string
return ans;
}
int main() {
// Given two strings by the user
const char* string1 = "cabaa";
const char* string2 = "bcaaa";
// Call the helper function
char* result = helper(string1, string2);
// Print the lexicographically largest possible string
printf("The lexicographically largest possible string is: %s\n", result);
// Free the allocated memory
free(result);
return 0;
}
输出
The lexicographically largest possible string is: cbcabaaaaa
#include<bits/stdc++.h>
using namespace std;
// Make a function to get the Lexicographically largest possible string
string helper(string word1, string word2) {
// Define size of string1 and string2
int i = 0, j = 0, n = word1.size(), m = word2.size();
string ans;
// Using the pointer technique
while(i < n && j < m) {
// Check which character is maximum
if(word1.substr(i) > word2.substr(j)){
ans += word1[i];
i++;
} else {
ans += word2[j];
j++;
}
}
// If the condition for 'i' was not satisfied append the rest first string to the final answer
while(i < n){
ans += word1[i];
i++;
}
// If the condition for 'i' was not satisfied append the rest first string to the final answer
while(j < m){
ans += word2[j];
j++;
}
// return the final answer which would provide the optimal result
return ans;
}
int main() {
// Given two strings by the user
string string1 = "cabaa";
string string2 = "bcaaa";
// Call the helper function
cout << "The lexicographically largest possible string is: " << helper(string1, string2);
return 0;
}
输出
The lexicographically largest possible string is: cbcabaaaaa
public class Main {
// Make a function to get the lexicographically largest possible string
public static String helper(String word1, String word2) {
int i = 0, j = 0;
int n = word1.length();
int m = word2.length();
StringBuilder ans = new StringBuilder(); // Use StringBuilder to efficiently build the string
// Using a pointer technique
while (i < n && j < m) {
// Check which character is maximum
if (word1.substring(i).compareTo(word2.substring(j)) > 0) {
ans.append(word1.charAt(i));
i++;
} else {
ans.append(word2.charAt(j));
j++;
}
}
// If the condition for 'i' was not satisfied, append the rest of the first string to the final answer
while (i < n) {
ans.append(word1.charAt(i));
i++;
}
// If the condition for 'j' was not satisfied, append the rest of the second string to the final answer
while (j < m) {
ans.append(word2.charAt(j));
j++;
}
// Return the final answer which provides the optimal result
return ans.toString();
}
public static void main(String[] args) {
// Given two strings by the user
String string1 = "cabaa";
String string2 = "bcaaa";
// Call the helper function
System.out.println("The lexicographically largest possible string is: " + helper(string1, string2));
}
}
输出
The lexicographically largest possible string is: cbcabaaaaa
# Function to get the lexicographically largest possible string
def helper(word1, word2):
i, j = 0, 0
n, m = len(word1), len(word2)
ans = []
# Using a pointer technique
while i < n and j < m:
# Check which character is maximum
if word1[i:] > word2[j:]:
ans.append(word1[i])
i += 1
else:
ans.append(word2[j])
j += 1
# If the condition for 'i' was not satisfied, append the rest of the first string to the final answer
while i < n:
ans.append(word1[i])
i += 1
# If the condition for 'j' was not satisfied, append the rest of the second string to the final answer
while j < m:
ans.append(word2[j])
j += 1
# Join the characters to form the final answer
return ''.join(ans)
# Main function
def main():
# Given two strings by the user
string1 = "cabaa"
string2 = "bcaaa"
# Call the helper function
result = helper(string1, string2)
print("The lexicographically largest possible string is:", result)
if __name__ == "__main__":
main()
输出
The lexicographically largest possible string is: cbcabaaaaa
上述代码的复杂度
时间复杂度 - O(m+n);其中“m”和“n”是用户提供的两个字符串的初始输入大小。这里一个循环将被使用 (n + m) 次以获得最终解决方案。
空间复杂度 - O(n+m);这里使用一个字符串“ans”来存储我们的输出,这将在内存中占用 (n+m) 的大小。
结论
在本文中,为了找到通过一次添加一个字符来合并用户提供的两个字符串而得到的字典序最大的字符串,首先,我们将使用递归过程来应用朴素的方法以获得输出。我们将仔细考虑合并字符串的所有可用选项,递归将为我们提供最合适的输出,以满足字典序条件,同时记住两个字符串的顺序。但是这种方法需要更多的时间来执行代码。因此,我们将使用另一种方法,即使用贪婪指针的迭代方法来提高时间复杂度,通过此过程,我们将能够仅通过一次迭代即可达到最终输出。
数据结构
网络
关系数据库管理系统 (RDBMS)
操作系统
Java
iOS
HTML
CSS
Android
Python
C语言编程
C++
C#
MongoDB
MySQL
JavaScript
PHP