所有元素均为 1 的最大正方形子矩阵
当给出二进制矩阵时,我们的任务是找到所有元素均为 1 的正方形矩阵。
对于这个问题,我们将创建一个辅助大小矩阵,其顺序与给定矩阵相同。此大小矩阵将有助于表示,在每个条目 Size[i, j] 中,具有全部为 1 的正方形矩阵的大小。从该大小矩阵中,我们将获得最大数字以获取最大正方形矩阵的大小。
输入和输出
Input: The binary matrix. 0 1 1 0 1 1 1 0 1 0 0 1 1 1 0 1 1 1 1 1 0 0 0 0 0 Output: The largest submatrix with all 1’s.
算法
subMatWithOne(given matrix)
输入 − 主矩阵。
输出 − 显示所有为 1 的正方形矩阵,哪个最大。
Begin define subMat whose order is same as given matrix copy first row and first column of given matrix to subMat for all row i (1 to n), do for all column j (1 to n), do if matrix[i, j] = 1, then subMat[i, j] := 1 + minimum of subMat[i, j-1] and subMat[i-1, j-1] else subMat[i, j] := 0 done done maxSize := subMat[0, 0], iMax := 0 and jMax := 0 for all row i and column j, do if maxSize < subMat[i, j], then maxSize := subMat[i, j] iMax := i, jMax := j done print sub matrix from row = iMax to (iMax - maxSize), and column jMax to (jMax - maxSize) End
示例
#include<iostream> #define ROW 6 #define COL 5 using namespace std; int matrix[ROW][COL] = { {0, 1, 1, 0, 1}, {1, 1, 0, 1, 0}, {0, 1, 1, 1, 0}, {1, 1, 1, 1, 0}, {1, 1, 1, 1, 1}, {0, 0, 0, 0, 0} }; int min(int a, int b, int c) { return ((a<b?a:b))?((a<c)?a:c):((b<c)?b:c); } void subMatWithOne() { int subMat[ROW][COL]; int maxSize, iMax, jMax; for(int i = 0; i < ROW; i++) //copy first row of matrix to sub matrix subMat[i][0] = matrix[i][0]; for(int j = 0; j < COL; j++) //copy first column of matrix to sub matrix subMat[0][j] = matrix[0][j]; for(int i = 1; i < ROW; i++) { for(int j = 1; j < COL; j++) { if(matrix[i][j] == 1) //find minimum of left, top and diagonal element + 1 subMat[i][j] = min(subMat[i][j-1], subMat[i-1][j], subMat[i-1][j-1]) + 1; else subMat[i][j] = 0; //if item is 0, put only 0 } } maxSize = subMat[0][0]; iMax = 0; jMax = 0; for(int i = 0; i < ROW; i++) { //find the order of sub square matrix for(int j = 0; j < COL; j++) { if(maxSize < subMat[i][j]) { maxSize = subMat[i][j]; iMax = i; jMax = j; } } } cout << "Subsquare matrix: "<<endl; for(int i = iMax; i > iMax - maxSize; i--) { //print the submatrix using max size for(int j = jMax; j > jMax - maxSize; j--) { cout << matrix[i][j]<<" "; } cout << endl; } } int main() { subMatWithOne(); }
输出
Subsquare matrix: 1 1 1 1 1 1 1 1 1
广告