在 C 程序中打印给定大小的最大和方阵子矩阵。
给定 NxN 的矩阵,查找 MxM 的子矩阵,其中 M<=N 和 M>=1,使矩阵 MxM 中所有元素的总和最大。矩阵 NxN 的输入可以包含零、正和负整数。
实例
Input: {{1, 1, 1, 1, 1}, {2, 2, 2, 2, 2}, {3, 3, 3, 3, 3}, {4, 4, 4, 4, 4}, {5, 5, 5, 5, 5} } Output: 4 4 5 5
上述问题可以通过一个简单的解决方案来解决,其中我们可以采用整个矩阵 NxN,然后找出所有可能的矩阵 MxM 并求它们的和,最后打印出具有最大和的矩阵 MxM。这种方法简单,但需要 O(N^2.M^2) 的时间复杂度,因此我们尝试找出一种耗时较少的方法。
算法
Start Step 1 -> Declare Function void matrix(int arr[][size], int k) IF k>size Return Declare int array[size][size] Loop For int j=0 and j<size and j++ Set sum=0 Loop for int i=0 and i<k and i++ Set sum=sum + arr[i][j] End Set array[0][j]=sum Loop For int i=1 and i<size-k+1 and i++ Set sum=sum+(arr[i+k-1]][j]-arr[i-1][j] Set arrayi][j]=sum End Set int maxsum = INT_MIN and *pos = NULL Loop For int i=0 and i<size-k+1 and i++) Set int sum = 0 Loop For int j = 0 and j<k and j++ Set sum += array[i][j] End If sum > maxsum Set maxsum = sum Set pos = &(arr[i][0]) End Loop For int j=1 and j<size-k+1 and j++ Set sum += (array[i][j+k-1] - array[i][j-1]) IF sum > maxsum Set maxsum = sum Set pos = &(arr[i][j]) End End End Loop For int i=0 and i<k and i++ Loop For int j=0 and j<k and j++ Print *(pos + i*size + j) End Print
End Step 2 -> In main() Declare int array[size][size] = {{1, 1, 1, 1, 1}, {2, 2, 2, 2, 2}, {3, 3, 3, 3, 3}, {4, 4, 4, 4, 4}, {5, 5, 5, 5, 5}} Declare int k = 2 Call matrix(array, k) Stop
实例
#include <bits/stdc++.h> using namespace std; #define size 5 void matrix(int arr[][size], int k){ if (k > size) return; int array[size][size]; for (int j=0; j<size; j++){ int sum = 0; for (int i=0; i<k; i++) sum += arr[i][j]; array[0][j] = sum; for (int i=1; i<size-k+1; i++){ sum += (arr[i+k-1][j] - arr[i-1][j]); array[i][j] = sum; } } int maxsum = INT_MIN, *pos = NULL; for (int i=0; i<size-k+1; i++){ int sum = 0; for (int j = 0; j<k; j++) sum += array[i][j]; if (sum > maxsum){ maxsum = sum; pos = &(arr[i][0]); } for (int j=1; j<size-k+1; j++){ sum += (array[i][j+k-1] - array[i][j-1]); if (sum > maxsum){ maxsum = sum; pos = &(arr[i][j]); } } } for (int i=0; i<k; i++){ for (int j=0; j<k; j++) cout << *(pos + i*size + j) << " "; cout << endl; } } int main(){ int array[size][size] = { {1, 1, 1, 1, 1}, {2, 2, 2, 2, 2}, {3, 3, 3, 3, 3}, {4, 4, 4, 4, 4}, {5, 5, 5, 5, 5}, }; int k = 2; matrix(array, k); return 0; }
输出
如果我们运行上述程序,它将生成以下输出
4 4 5 5
广告