使用 C++ 中的二进制索引树查找最大和递增子序列
本题目中,给定一个包含 N 个元素的数组 arr[]。我们的任务是创建一个程序,用于使用 C++ 中的二进制索引树查找最大和递增子序列。
我们举个例子来理解这个问题,
输入
arr[] = {4, 1, 9, 2, 3, 7}
输出
13
说明
最大递增子序列为 1、2、3、7。总和 = 13
解决方案方法
为了解决这个问题,我们将使用二进制索引树,其中我们会插入值并将它们映射到二进制索引树。然后找到最大值。
示例
一段程序来说明我们解决方案的工作原理,
#include <bits/stdc++.h> using namespace std; int calcMaxSum(int BITree[], int index){ int maxSum = 0; while (index > 0){ maxSum = max(maxSum, BITree[index]); index -= index & (-index); } return maxSum; } void updateBIT(int BITree[], int newIndex, int index, int val){ while (index <= newIndex){ BITree[index] = max(val, BITree[index]); index += index & (-index); } } int maxSumIS(int arr[], int n){ int index = 0, maxSum; map<int, int> arrMap; for (int i = 0; i < n; i++){ arrMap[arr[i]] = 0; } for (map<int, int>::iterator it = arrMap.begin(); it != arrMap.end(); it++){ index++; arrMap[it->first] = index; } int* BITree = new int[index + 1]; for (int i = 0; i <= index; i++){ BITree[i] = 0; } for (int i = 0; i < n; i++){ maxSum = calcMaxSum(BITree, arrMap[arr[i]] - 1); updateBIT(BITree, index, arrMap[arr[i]], maxSum + arr[i]); } return calcMaxSum(BITree, index); } int main() { int arr[] = {4, 6, 1, 9, 2, 3, 5, 8}; int n = sizeof(arr) / sizeof(arr[0]); cout<<"The Maximum sum increasing subsequence using Binary Indexed Tree is "<<maxSumIS(arr, n); return 0; }
输出
The Maximum sum increasing subsquence using Binary Indexed Tree is 19
广告