C++程序:查找最长位数等差子序列的长度
假设我们有一组数字。我们需要找到最长位数等差子序列的长度。我们知道,如果一个序列先严格递增,然后严格递减,则称其为位数等差序列。严格递增序列也是位数等差序列。严格递减序列也是位数等差序列。
因此,如果输入类似于nums = [0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15],序列大小为16,则输出为7。
为了解决这个问题,我们将遵循以下步骤:
创建一个与给定数组大小相同的新数组increasingSubSeq,并将其填充为1
初始化 i := 1,当 i < size 时,更新(i增加1),执行:
初始化 j := 0,当 j < i 时,更新(j增加1),执行:
如果 arr[i] > arr[j] 且 increasingSubSeq[i] < increasingSubSeq[j] + 1,则:
increasingSubSeq[i] := increasingSubSeq[j] + 1
创建一个与给定数组大小相同的新数组decreasingSubSeq,并将其填充为1
初始化 i := size - 2,当 i >= 0 时,更新(i减少1),执行:
初始化 j := size - 1,当 j > i 时,更新(j减少1),执行:
如果 arr[i] > arr[j] 且 decreasingSubSeq[i] < decreasingSubSeq[j] + 1,则:
decreasingSubSeq[i] := decreasingSubSeq[j] + 1
max := increasingSubSeq[0] + decreasingSubSeq[0] - 1
初始化 i := 1,当 i < size 时,更新(i增加1),执行:
如果 increasingSubSeq[i] + decreasingSubSeq[i] - 1 > max,则
max := increasingSubSeq[i] + decreasingSubSeq[i] - 1
返回 max
让我们看看下面的实现,以便更好地理解:
示例
#include<iostream> using namespace std; int longBitonicSub( int arr[], int size ) { int *increasingSubSeq = new int[size]; for (int i = 0; i < size; i++) increasingSubSeq[i] = 1; for (int i = 1; i < size; i++) for (int j = 0; j < i; j++) if (arr[i] > arr[j] && increasingSubSeq[i] < increasingSubSeq[j] + 1) increasingSubSeq[i] = increasingSubSeq[j] + 1; int *decreasingSubSeq = new int [size]; for (int i = 0; i < size; i++) decreasingSubSeq[i] = 1; for (int i = size-2; i >= 0; i--) for (int j = size-1; j > i; j--) if (arr[i] > arr[j] && decreasingSubSeq[i] < decreasingSubSeq[j] + 1) decreasingSubSeq[i] = decreasingSubSeq[j] + 1; int max = increasingSubSeq[0] + decreasingSubSeq[0] - 1; for (int i = 1; i < size; i++) if (increasingSubSeq[i] + decreasingSubSeq[i] - 1 > max) max = increasingSubSeq[i] + decreasingSubSeq[i] - 1; return max; } int main() { int arr[] = {0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15}; int n = 16; cout << longBitonicSub(arr, n); }
输入
[0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15], 16
输出
7