Python求解方程最大值程序
假设我们有一个名为points的数组,其中包含二维平面上的坐标点,它们按x值排序,其中points[i] = (x_i, y_i),因此对于所有1 <= i < j <= 点数,x_i < x_j。我们还有另一个值k。我们需要找到方程y_i + y_j + |x_i - x_j| 的最大值,其中|x_i - x_j| <= k 且 1 <= i < j <= 点数。
因此,如果输入类似于 points = [[2,4],[3,1],[6,11],[7,-9]] k = 1,则输出将为6,因为前两个点满足条件 |xi - xj| <= 1,如果我们计算方程,我们得到 4 + 1 + |2 - 3| = 6。第三个和第四个点也满足条件,并返回 11 + -9 + |6 - 7| = 3 的值,所以最大值为6。
为了解决这个问题,我们将遵循以下步骤:
left := 0, right := 1
max_value := -∞
当 right < points 的大小 时,执行:
(xl, yl) := points[left]
(xr, yr) := points[right]
diff := |xr - xl|
如果 left 等于 right,则
right := right + 1
否则,如果 diff <= k,则
m := yl + yr + diff
max_value := max_value 和 m 的最大值
如果 yl >= yr - diff,则
right := right + 1
否则,
left := left + 1
否则,
left := left + 1
返回 max_value
示例
让我们看看下面的实现来更好地理解
def solve(points, k): left, right = 0, 1 max_value = float('-inf') while right < len(points): xl, yl = points[left] xr, yr = points[right] diff = abs(xr - xl) if left == right: right += 1 elif diff <= k: m = yl + yr + diff max_value = max(max_value, m) if yl >= yr - diff: right += 1 else: left += 1 else: left += 1 return max_value points = [[2,4],[3,1],[6,11],[7,-9]] k = 1 print(solve(points, k))
输入
[[2,4],[3,1],[6,11],[7,-9]], 1
输出
6
广告