Python程序:查找N个自然数中和能被k整除的数对数量
假设我们有一个数字n和另一个值k,考虑我们有一个数组A,其中包含前N个自然数,我们需要找到数组A中元素A[i]和A[j]的所有对的数量,满足i < j且它们的和能被k整除。
因此,如果输入类似于n = 10,k = 4,则输出将为10,因为有10对的和能被4整除。[(1,3), (1,7), (2,6), (2,10), (3,5), (3,9), (4,8), (5,7), (6,10), (7,9)]
为了解决这个问题,我们将遵循以下步骤:
- m := n / k的向下取整,r := n mod k
- b := 一个新的映射
- 对于i从0到k - 1,执行以下操作:
- b[i] := m
- 对于i从m*k+1到n,执行以下操作:
- j := i mod k
- b[j] := b[j] + 1
- c := 0
- 对于i从0到k,执行以下操作:
- i1 := i
- i2 :=(k - i) mod k
- 如果i1等于i2,则
- c := c + b[i] *(b[i]-1)
- 否则,
- c := c + b[i1] *(b[i2])
- 返回c/2的向下取整
示例
让我们看看以下实现,以便更好地理解:
def solve(n, k): m = n // k r = n % k b = {} for i in range(k) : b[i] = m for i in range(m*k+1, n+1) : j = i % k b[j] = b[j] + 1 c = 0 for i in range(k) : i1 = i i2 = (k - i) % k if i1 == i2 : c = c + b[i] * (b[i]-1) else : c = c + b[i1] * (b[i2]) return c//2 n = 10 k = 4 print(solve(n, k))
输入
4, 27
Learn Python in-depth with real-world projects through our Python certification course. Enroll and become a certified expert to boost your career.
输出
10
广告