Python - 计算 Pandas DataFrame 中某一列的标准差
要计算标准差,使用 Pandas 的 std() 方法。首先,导入必需的 Pandas 库 −
import pandas as pd
现在,使用两列创建 DataFrame −
dataFrame1 = pd.DataFrame( { "Car": ['BMW', 'Lexus', 'Audi', 'Tesla', 'Bentley', 'Jaguar'], "Units": [100, 150, 110, 80, 110, 90] } )
使用 std() 查找“Units”列值的标准差 −
print"Standard Deviation of Units column from DataFrame1 = ",dataFrame1['Units'].std()
同样,我们从第 2 个 DataFrame 中计算了标准差。
示例
以下是完整代码 −
# # Python - Calculate the Standard Deviation of column values of a Pandas DataFrame # import pandas as pd # Create DataFrame1 dataFrame1 = pd.DataFrame( { "Car": ['BMW', 'Lexus', 'Audi', 'Tesla', 'Bentley', 'Jaguar'], "Units": [100, 150, 110, 80, 110, 90] } ) print"DataFrame1 ...\n",dataFrame1 # Finding Standard Deviation of "Units" column values print"Standard Deviation of Units column from DataFrame1 = ",dataFrame1['Units'].std() # Create DataFrame2 dataFrame2 = pd.DataFrame( { "Product": ['TV', 'PenDrive', 'HeadPhone', 'EarPhone', 'HDD', 'SSD'], "Price": [8000, 500, 3000, 1500, 3000, 4000] } ) print"\nDataFrame2 ...\n",dataFrame2 # Finding Standard Deviation of "Price" column values print"Standard Deviation of Price column from DataFrame2 = ",dataFrame2['Price'].std()
输出
将产生以下输出 −
DataFrame1 ... Car Units 0 BMW 100 1 Lexus 150 2 Audi 110 3 Tesla 80 4 Bentley 110 5 Jaguar 90 Standard Deviation of Units column from DataFrame1 = 24.2212028328 DataFrame2 ... Price Product 0 8000 TV 1 500 PenDrive 2 3000 HeadPhone 3 1500 EarPhone 4 3000 HDD 5 4000 SSD Standard Deviation of Price column from DataFrame2 = 2601.28173535
广告