Python – 对 Pandas DataFrame 中的列值进行分组并计算其和


我们考虑汽车销售记录,按月分组来计算每月汽车的注册价格总额。要计算总额,我们使用 sum() 方法。

首先,假设以下是我们包含三列的 Pandas DataFrame −

dataFrame = pd.DataFrame(
   {
      "Car": ["Audi", "Lexus", "Tesla", "Mercedes", "BMW", "Toyota", "Nissan", "Bentley", "Mustang"],

      "Date_of_Purchase": [
         pd.Timestamp("2021-06-10"),
         pd.Timestamp("2021-07-11"),
         pd.Timestamp("2021-06-25"),
         pd.Timestamp("2021-06-29"),
         pd.Timestamp("2021-03-20"),
         pd.Timestamp("2021-01-22"),
         pd.Timestamp("2021-01-06"),
         pd.Timestamp("2021-01-04"),
         pd.Timestamp("2021-05-09")
      ],

      "Reg_Price": [1000, 1400, 1100, 900, 1700, 1800, 1300, 1150, 1350]
   }
)

在 groupby() 函数中使用 Grouper 选择 Date_of_Purchase 列。频次 freq 设置成 "M",按月进行分组,使用 sum() 函数计算总额 −

print"\nGroup Dataframe by month...\n",dataFrame.groupby(pd.Grouper(key='Date_of_Purchase', axis=0, freq='M')).sum()

示例

以下为代码 −

import pandas as pd

# dataframe with one of the columns as Date_of_Purchase
dataFrame = pd.DataFrame(
   {
      "Car": ["Audi", "Lexus", "Tesla", "Mercedes", "BMW", "Toyota", "Nissan", "Bentley", "Mustang"],

      "Date_of_Purchase": [
         pd.Timestamp("2021-06-10"),
         pd.Timestamp("2021-07-11"),
         pd.Timestamp("2021-06-25"),
         pd.Timestamp("2021-06-29"),
         pd.Timestamp("2021-03-20"),
         pd.Timestamp("2021-01-22"),
         pd.Timestamp("2021-01-06"),
         pd.Timestamp("2021-01-04"),
         pd.Timestamp("2021-05-09")
      ],

      "Reg_Price": [1000, 1400, 1100, 900, 1700, 1800, 1300, 1150, 1350]
   }
)

print"DataFrame...\n",dataFrame

# Grouper to select Date_of_Purchase column within groupby function
# calculation the sum month-wise
print"\nGroup Dataframe by month...\n",dataFrame.groupby(pd.Grouper(key='Date_of_Purchase', axis=0, freq='M')).sum()

输出

将产生以下输出 −

DataFrame...
        Car   Date_of_Purchase   Reg_Price
0      Audi        2021-06-10        1000
1     Lexus        2021-07-11        1400
2     Tesla        2021-06-25        1100
3  Mercedes        2021-06-29         900
4       BMW        2021-03-20        1700
5    Toyota        2021-01-22        1800
6    Nissan        2021-01-06        1300
7   Bentley        2021-01-04        1150
8   Mustang        2021-05-09        1350

Group Dataframe by month...
                   Reg_Price
Date_of_Purchase
2021-01-31           4250.0
2021-02-28              NaN
2021-03-31           1700.0
2021-04-30              NaN
2021-05-31           1350.0
2021-06-30           3000.0
2021-07-31           1400.0

更新日期:16-9-2021

1K+ 浏览

开启 职业生涯

完成课程以获得认证

开始学习
广告