Python Pandas - 根据原索引创建 DataFrame,但强制执行新索引
要根据原索引创建 DataFrame,但强制执行新索引,请使用 index.to_frame()。将参数index设置为False。
首先,导入必需的库 -
import pandas as pd
创建 Pandas 索引 -
index = pd.Index(['Electronics','Accessories','Decor', 'Books', 'Toys'],name ='Products')
显示 Pandas 索引
print("Pandas Index...\n",index)
强制执行新索引并将索引转换为 DataFrame。在此,实际索引将被另一个索引替换 -
print("\nIndex to DataFrame...\n",index.to_frame(index=False))示例
以下是代码 -
import pandas as pd
# Creating Pandas index
index = pd.Index(['Electronics','Accessories','Decor', 'Books', 'Toys'],name ='Products')
# Display the Pandas index
print("Pandas Index...\n",index)
# Return the number of elements in the Index
print("\nNumber of elements in the index...\n",index.size)
# Return the dtype of the data
print("\nThe dtype object...\n",index.dtype)
# Enforce new index and convert index to DataFrame
# Here, the actual index gets replaced by another index
print("\nIndex to DataFrame...\n",index.to_frame(index=False))输出
这将产生以下输出 -
Pandas Index... Index(['Electronics', 'Accessories', 'Decor', 'Books', 'Toys'], dtype='object', name='Products') Number of elements in the index... 5 The dtype object... object Index to DataFrame... Products 0 Electronics 1 Accessories 2 Decor 3 Books 4 Toys
广告
数据结构
网络
RDBMS
操作系统
Java
iOS
HTML
CSS
Android
Python
C 编程
C++
C#
MongoDB
MySQL
Javascript
PHP