Python Pandas - 根据原索引创建 DataFrame,但强制执行新索引


要根据原索引创建 DataFrame,但强制执行新索引,请使用 index.to_frame()。将参数index设置为False

首先,导入必需的库 -

import pandas as pd

创建 Pandas 索引 -

index = pd.Index(['Electronics','Accessories','Decor', 'Books', 'Toys'],name ='Products')

显示 Pandas 索引

print("Pandas Index...\n",index)

强制执行新索引并将索引转换为 DataFrame。在此,实际索引将被另一个索引替换 -

print("\nIndex to DataFrame...\n",index.to_frame(index=False))

示例

以下是代码 -

import pandas as pd

# Creating Pandas index
index = pd.Index(['Electronics','Accessories','Decor', 'Books', 'Toys'],name ='Products')

# Display the Pandas index
print("Pandas Index...\n",index)

# Return the number of elements in the Index
print("\nNumber of elements in the index...\n",index.size)

# Return the dtype of the data
print("\nThe dtype object...\n",index.dtype)

# Enforce new index and convert index to DataFrame
# Here, the actual index gets replaced by another index
print("\nIndex to DataFrame...\n",index.to_frame(index=False))

输出

这将产生以下输出 -

Pandas Index...
Index(['Electronics', 'Accessories', 'Decor', 'Books', 'Toys'], dtype='object', name='Products')

Number of elements in the index...
5

The dtype object...
object

Index to DataFrame...
      Products
0  Electronics
1  Accessories
2        Decor
3        Books
4         Toys

更新于: 13-Oct-2021

205 次浏览

开始你的职业生涯

通过完成该课程来获得认证

入门
广告
© . All rights reserved.