Python线性代数中矩阵的核范数计算
在Python NumPy中,使用`LA.norm()`方法可以返回线性代数中矩阵或向量的范数。第一个参数`x`是输入数组。如果`axis`为`None`,则`x`必须是一维或二维数组,除非`ord`为`None`。如果`axis`和`ord`都为`None`,则返回`x.ravel`的2-范数。
第二个参数`ord`是范数的阶数。`inf`表示NumPy的`inf`对象。默认值为`None`。“nuc”作为参数设置的是核范数。Frobenius范数和核范数的阶数仅对矩阵定义。
步骤
首先,导入所需的库:
import numpy as np from numpy import linalg as LA
创建一个数组:
arr = np.array([[ -4, -3, -2], [-1, 0, 1], [2, 3, 4] ])
显示数组:
print("Our Array...\n",arr)检查维度:
print("\nDimensions of our Array...\n",arr.ndim)获取数据类型:
print("\nDatatype of our Array object...\n",arr.dtype)获取形状:
print("\nShape of our Array object...\n",arr.shape)要返回线性代数中矩阵或向量的范数,请使用`LA.norm()`方法:
print("\nResult...\n",LA.norm(arr, 'nuc'))示例
import numpy as np
from numpy import linalg as LA
# Create an array
arr = np.array([[ -4, -3, -2],[-1, 0, 1],[2, 3, 4] ])
# Display the array
print("Our Array...\n",arr)
# Check the Dimensions
print("\nDimensions of our Array...\n",arr.ndim)
# Get the Datatype
print("\nDatatype of our Array object...\n",arr.dtype)
# Get the Shape
print("\nShape of our Array object...\n",arr.shape)
# To return the Norm of the matrix or vector in Linear Algebra, use the LA.norm() method in Python Numpy
print("\nResult...\n",LA.norm(arr, 'nuc'))输出
Our Array... [[-4 -3 -2] [-1 0 1] [ 2 3 4]] Dimensions of our Array... 2 Datatype of our Array object... int64 Shape of our Array object... (3, 3) Result... 9.797958971132713
广告
数据结构
网络
关系型数据库管理系统 (RDBMS)
操作系统
Java
iOS
HTML
CSS
Android
Python
C语言编程
C++
C#
MongoDB
MySQL
Javascript
PHP