将中缀表达式转换为后缀表达式
中缀表达式可读且可被人理解。我们可以轻松区分运算符的顺序,也可以使用括号在解决数学表达式时首先解决部分内容。计算机不能轻松地区分运算符和括号,因此需要后缀转换。
要将中缀表达式转换为后缀表达式,我们将使用栈数据结构。从左向右扫描中缀表达式,当得到任何运算符时,简单地将它们添加到后缀形式中,对于运算符和括号,将它们添加到栈中,保持它们的优先级。
注意:这里我们仅考虑 {+, −, ∗, /, ^} 运算符,其他运算符将被忽略。
输入和输出
Input: The infix expression. x^y/(5*z)+2 Output: Postfix Form Is: xy^5z*/2+
算法
infixToPostfix(infix)
输入 − 中缀表达式。
输出 − 将中缀表达式转换为后缀形式。
Begin initially push some special character say # into the stack for each character ch from infix expression, do if ch is alphanumeric character, then add ch to postfix expression else if ch = opening parenthesis (, then push ( into stack else if ch = ^, then //exponential operator of higher precedence push ^ into the stack else if ch = closing parenthesis ), then while stack is not empty and stack top ≠ (, do pop and add item from stack to postfix expression done pop ( also from the stack else while stack is not empty AND precedence of ch <= precedence of stack top element, do pop and add into postfix expression done push the newly coming character. done while the stack contains some remaining characters, do pop and add to the postfix expression done return postfix End
示例
#include<iostream> #include<stack> #include<locale> //for function isalnum() using namespace std; int preced(char ch) { if(ch == '+' || ch == '-') { return 1; //Precedence of + or - is 1 }else if(ch == '*' || ch == '/') { return 2; //Precedence of * or / is 2 }else if(ch == '^') { return 3; //Precedence of ^ is 3 }else { return 0; } } string inToPost(string infix ) { stack<char> stk; stk.push('#'); //add some extra character to avoid underflow string postfix = ""; //initially the postfix string is empty string::iterator it; for(it = infix.begin(); it!=infix.end(); it++) { if(isalnum(char(*it))) postfix += *it; //add to postfix when character is letter or number else if(*it == '(') stk.push('('); else if(*it == '^') stk.push('^'); else if(*it == ')') { while(stk.top() != '#' && stk.top() != '(') { postfix += stk.top(); //store and pop until ( has found stk.pop(); } stk.pop(); //remove the '(' from stack }else { if(preced(*it) > preced(stk.top())) stk.push(*it); //push if precedence is high else { while(stk.top() != '#' && preced(*it) <= preced(stk.top())) { postfix += stk.top(); //store and pop until higher precedence is found stk.pop(); } stk.push(*it); } } } while(stk.top() != '#') { postfix += stk.top(); //store and pop until stack is not empty. stk.pop(); } return postfix; } int main() { string infix = "x^y/(5*z)+2"; cout << "Postfix Form Is: " << inToPost(infix) << endl; }
输出
Postfix Form Is: xy^5z*/2+
广告