移动数字键盘问题\n


本例中,给出一个数字手机键盘。我们只能按当前按钮的顶部、底部、右侧和左侧按钮,不允许按对角键。我们也不能按键盘上的 * 和 # 按钮。

给定一个数字,我们必须找到可以使用键盘和给定的规则组成的指定位数的数字的数量。

输入和输出

Input:
Digit count. Say 3 digit numbers.
Output:
Number of possible 3 digit numbers, that can be formed with the given conditions. Here the answer is 138.

算法

getCount(n)

输入:数字 n。
输出:在手机键盘中键入 n 位数字的可能方法。

Begin
   if n <= 0, then
      return 0
   if n = 1, then
      return 10

   define two array row and col to move each direction from current key
   define count table of size (10 x n+1)

   for i in range 0 to 9, do
      count[i, 0] := 0
      count[i, 1] := 1
   done

   for k in range 2 to n, do
      for i in range 0 to 3, do
         for j in range 0 to 2, do
            if key[i, j] ≠ * or #, then
               num := key[i, j]
               count[num, k] := 0
               for all possible moves, do
                  rowMove := i + row[move]
                  colMove := j + col[move]
                  if rowMove in (0..3) colMove in (0..2), and key ≠ * or #, then
                     nextNum := key[rowMove, colMove]
                     count[num, k] := count[num, k] + count[nextNum, k+1]
               done
         done
      done
   done

   totalCount := 0
   for i in range 1 to 9, do
      totalCount := totalCount + count[i, n]
   done

   return totalCount
End

示例

#include <iostream>
using namespace std;

char keypad[4][3] = {
   {'1','2','3'},
   {'4','5','6'},
   {'7','8','9'},
   {'*','0','#'}
};

int getCount(int n) {
   if(keypad == NULL || n <= 0)
      return 0;

   if(n == 1)
      return 10;       //1 digit number 0-9

   int row[] = {0, 0, -1, 0, 1};           //for up and down the row will change

   int col[] = {0, -1, 0, 1, 0};           //for left and right column will change

   int count[10][n+1];                    //store count for starting with i and length j
   int move=0, rowMove=0, colMove=0, num = 0;
   int nextNum=0, totalCount = 0;

   for (int i=0; i<=9; i++) {                 //for length 0 and 1
      count[i][0] = 0;
      count[i][1] = 1
   }

   for (int k=2; k<=n; k++) {                   //for digits 2 to n
      for (int i=0; i<4; i++ ) {                 //for Row wise
         for (int j=0; j<3; j++) {              // for column wise
            if (keypad[i][j] != '*' && keypad[i][j] != '#') {   //keys are not * and #
               num = keypad[i][j] - '0';                //find the number from the character
               count[num][k] = 0;

               for (move=0; move<5; move++) {
                  rowMove = i + row[move];          //move using row moving matrix
                  colMove = j + col[move];          //move using column moving matrix
                  if (rowMove >= 0 && rowMove <= 3 && colMove >=0 && colMove <= 2 &&
                     keypad[rowMove][colMove] != '*' && keypad[rowMove][colMove] != '#') {
                        nextNum = keypad[rowMove][colMove] - '0';        //find next number
                        count[num][k] += count[nextNum][k-1];
                  }
               }
            }
         }
      }
   }

   totalCount = 0;
   for (int i=0; i<=9; i++)             //for the number starting with i
      totalCount += count[i][n];
   return totalCount;
}

int main() {
   int n;
   cout << "Number of digits: "; cin >> n;
   cout << "Possible Combinations: " << getCount(n);
}

输出

Number of digits: 3
Possible Combinations: 138

更新于: 2020 年 6 月 17 日

1K+ 阅读量

开启 职业生涯

通过完成课程获得认证

开始
广告