带父节点指针的二叉搜索树插入,用 C++ 编写的
我们可以使用递归方式在 BST 中插入新节点。在这种情况下,我们将返回每个子树的根地址。这里我们将看到另一种方法,其中需要维护父节点指针。父节点指针有助于查找节点的祖先等。
这个想法是存储左右子树的地址,并在递归调用后设置返回指针的父指针。这确认了所有父指针都是在插入过程中设置的。根的父项被设置为 null。
算法
insert(node, key) −
begin if node is null, then create a new node and return if the key is less than the key of node, then create a new node with key add the new node with the left pointer or node else if key is greater or equal to the key of node, then create a new node with key add the new node at the right pointer of the node end if return node end
示例
#include<iostream>
using namespace std;
class Node {
public:
int data;
Node *left, *right, *parent;
};
struct Node *getNode(int item) {
Node *temp = new Node;
temp->data = item;
temp->left = temp->right = temp->parent = NULL;
return temp;
}
void inorderTraverse(struct Node *root) {
if (root != NULL) {
inorderTraverse(root->left);
cout << root->data << " ";
if (root->parent == NULL)
cout << "NULL" << endl;
else
cout << root->parent->data << endl;
inorderTraverse(root->right);
}
}
struct Node* insert(struct Node* node, int key) {
if (node == NULL) return getNode(key);
if (key < node->data) { //to the left subtree
Node *left_child = insert(node->left, key);
node->left = left_child;
left_child->parent = node;
}
else if (key > node->data) { // to the right subtree
Node *right_child = insert(node->right, key);
node->right = right_child;
right_child->parent = node;
}
return node;
}
int main() {
struct Node *root = NULL;
root = insert(root, 100);
insert(root, 60);
insert(root, 40);
insert(root, 80);
insert(root, 140);
insert(root, 120);
insert(root, 160);
inorderTraverse(root);
}输出
40 60 60 100 80 60 100 NULL 120 140 140 100 160 140
广告
数据结构
网络
RDBMS
操作系统
Java
iOS
HTML
CSS
Android
Python
C 编程
C++
C#
MongoDB
MySQL
Javascript
PHP