图中的桥
无向图中的一条边叫做桥,当且仅当删除它会导致分离图或产生不同的图组件时,叫做桥。
在实际运用中,如果网络中存在一些桥,当桥的连接断开时,可能会破坏整个网络。
输入和输出
Input: The adjacency matrix of the graph. 0 1 1 1 0 1 0 1 0 0 1 1 0 0 0 1 0 0 0 1 0 0 0 1 0 Output: Bridges in given graph: Bridge 3--4 Bridge 0--3
算法
bridgeFind(start, visited, disc, low, parent)
输入 − 开始顶点、标记节点已访问的 visited 数组,disc 将记录顶点的发现时间,low 将保留有关子树的信息。parent 将保留当前顶点的父级。
输出 − 如果发现任何桥,则打印。
Begin time := 0 //the value of time will not be initialized for next function calls mark start as visited set disc[start] := time+1 and low[start] := time + 1 time := time + 1 for all vertex v in the graph G, do if there is an edge between (start, v), then if v is visited, then parent[v] := start bridgeFind(v, visited, disc, low, parent) low[start] := minimum of low[start] and low[v] if low[v] > disc[start], then display bridges from start to v else if v is not the parent of start, then low[start] := minimum of low[start] and disc[v] done End
示例
#include<iostream> #define NODE 5 using namespace std; int graph[NODE][NODE] = { {0, 1, 1, 1, 0}, {1, 0, 1, 0, 0}, {1, 1, 0, 0, 0}, {1, 0, 0, 0, 1}, {0, 0, 0, 1, 0} }; int min(int a, int b) { return (a<b)?a:b; } void bridgeFind(int start, bool visited[], int disc[], int low[], int parent[]) { static int time = 0; visited[start] = true; //make the first vertex is visited disc[start] = low[start] = ++time; //initialize discovery time and the low time for(int v = 0; v<NODE; v++) { if(graph[start][v]) { //for all vertex v, which is connected with start if(!visited[v]) { parent[v] = start; //make start node as parent bridgeFind(v, visited, disc, low, parent); low[start] = min(low[start], low[v]); //when subtree from v is connected to one of parent of start node if(low[v] > disc[start]) cout << "Bridge " << start << "--"<<v<<endl; } else if(v != parent[start]) //update low of start for previous call low[start] = min(low[start], disc[v]); } } } bool bridges() { bool *vis = new bool[NODE]; int *disc = new int[NODE]; int *low = new int[NODE]; int *parent = new int[NODE]; for(int i = 0; i<NODE; i++) { vis[i] = false; //no node is visited parent[i] = -1; //initially there is no parent for any node } for(int i = 0; i<NODE; i++) if(!vis[i]) //if any node is unvisited, the graph is not connected bridgeFind(i, vis, disc, low, parent); } int main() { cout << "Bridges in given graph:"<<endl; bridges(); }
输出
Bridges in given graph: Bridge 3--4 Bridge 0--3
广告