用深度为1的列表创建NumPy中的块矩阵


要构建一个矩阵块,请在Python Numpy中使用numpy.block()方法。这里,我们将从深度为一的列表中构建。内部列表中的块沿着最后一个维度(-1)进行级联,然后沿着倒数第二个维度(-2)进行级联,依此类推,直到达到最外层列表。

块可以是任何维度的,但是不会使用正常规则进行广播。相反,将插入大小为1的前导轴,以便使所有块的block.ndim相同。这主要用于处理标量,这意味着代码(如np.block([v, 1]))是有效的,其中v.ndim==1。

步骤

首先,导入所需的库 -

import numpy as np

使用array()方法创建两个numpy数组。我们插入了int类型的元素 -

arr1 = np.array([49, 76, 61, 82, 69, 29])
arr2 = np.array([40, 60, 89, 55, 32, 98])

显示数组 -

print("Array 1...
", arr1) print("
Array 2...
", arr2)

获取数组的类型 -

print("
Our Array 1 type...
", arr1.dtype) print("
Our Array 2 type...
", arr2.dtype)

获取数组的维度 -

print("
Our Array 1 Dimensions...
",arr1.ndim) print("
Our Array 2 Dimensions...
",arr2.ndim)

获取数组的形状 -

print("
Our Array 1 Shape...
",arr1.shape) print("
Our Array 2 Shape...
",arr2.shape)

要构建一个矩阵块,请在Python Numpy中使用numpy.block()方法 -

print("
Result...
",np.block([arr1, arr2, 99]))

示例

import numpy as np

# Creating two numpy arrays using the array() method
# We have inserted elements of int type
arr1 = np.array([49, 76, 61, 82, 69, 29])
arr2 = np.array([40, 60, 89, 55, 32, 98])

# Display the arrays
print("Array 1...
", arr1) print("
Array 2...
", arr2) # Get the type of the arrays print("
Our Array 1 type...
", arr1.dtype) print("
Our Array 2 type...
", arr2.dtype) # Get the dimensions of the Arrays print("
Our Array 1 Dimensions...
",arr1.ndim) print("
Our Array 2 Dimensions...
",arr2.ndim) # Get the shape of the Arrays print("
Our Array 1 Shape...
",arr1.shape) print("
Our Array 2 Shape...
",arr2.shape) # To build a block of matrix, use the numpy.block() method in Python Numpy print("
Result...
",np.block([arr1, arr2, 99]))

输出

Array 1...
[49 76 61 82 69 29]

Array 2...
[40 60 89 55 32 98]

Our Array 1 type...
int64

Our Array 2 type...
int64

Our Array 1 Dimensions...
1

Our Array 2 Dimensions...
1

Our Array 1 Shape...
(6,)

Our Array 2 Shape...
(6,)

Result...
[49 76 61 82 69 29 40 60 89 55 32 98 99]

更新日期:2022-02-18

133 次浏览

开启您的 职业

通过完成课程获得认证

开始
广告