比较两个包含NaN值的数组,并使用Numpy返回逐元素最小值
要比较两个包含一些NaN值的数组并返回逐元素最小值,请在Python Numpy中使用**numpy.minimum()** 方法。(原文错误地使用了maximum())
如果其中一个被比较的元素是NaN,则返回该元素。
如果两个元素都是NaN,则返回第一个。
后一种区别对于复数NaN很重要,复数NaN定义为实部或虚部至少有一个是NaN。
最终结果是NaN会被传播。
返回x1和x2的逐元素最小值。如果x1和x2都是标量,则这是一个标量。
比较两个数组并返回一个新数组,该数组包含逐元素最小值。如果其中一个被比较的元素是NaN,则返回该元素。如果两个元素都是NaN,则返回第一个。后一种区别对于复数NaN很重要,复数NaN定义为实部或虚部至少有一个是NaN。最终结果是NaN会被传播。
步骤
首先,导入所需的库:
import numpy as np
使用array()方法创建两个二维numpy数组。我们插入了一些包含nan值的元素:
arr1 = np.array([[6, np.nan, np.nan],[25, 11, 0]]) arr2 = np.array([[8, 12, np.nan],[22, 0, 26]])
显示数组:
print("Array 1...
", arr1)
print("
Array 2...
", arr2)获取数组的类型:
print("
Our Array 1 type...
", arr1.dtype)
print("
Our Array 2 type...
", arr2.dtype)获取数组的维度:
print("
Our Array 1 Dimensions...
",arr1.ndim)
print("
Our Array 2 Dimensions...
",arr2.ndim)获取数组的形状:
print("
Our Array 1 Shape...
",arr1.shape)
print("
Our Array 2 Shape...
",arr2.shape)要比较两个包含NaN值的数组并返回逐元素最小值,请使用numpy.minimum()方法:
print("
Result (minimum)...
",np.minimum(arr1, arr2))
示例
import numpy as np
# Creating two 2D numpy array using the array() method
# We have inserted elements with some nan values
arr1 = np.array([[6, np.nan, np.nan], [25, 11, 0]])
arr2 = np.array([[8, 12, np.nan],[22, 0, 26]])
# Display the arrays
print("Array 1...
", arr1)
print("
Array 2...
", arr2)
# Get the type of the arrays
print("
Our Array 1 type...
", arr1.dtype)
print("
Our Array 2 type...
", arr2.dtype)
# Get the dimensions of the Arrays
print("
Our Array 1 Dimensions...
",arr1.ndim)
print("
Our Array 2 Dimensions...
",arr2.ndim)
# Get the shape of the Arrays
print("
Our Array 1 Shape...
",arr1.shape)
print("
Our Array 2 Shape...
",arr2.shape)
# To compare two arrays with some NaN values and return the elementwise minimum, use the numpy.maximum() method in Python Numpy
# If one of the elements being compared is a NaN, then that element is returned.
# If both elements are NaNs then the first is returned.
# The latter distinction is important for complex NaNs, which are defined as at least one of the real or imaginary parts being a NaN.
# The net effect is that NaNs are propagated.
print("
Result (minimum)...
",np.minimum(arr1, arr2))输出
Array 1... [[ 6. nan nan] [25. 11. 0.]] Array 2... [[ 8. 12. nan] [22. 0. 26.]] Our Array 1 type... float64 Our Array 2 type... float64 Our Array 1 Dimensions... 2 Our Array 2 Dimensions... 2 Our Array 1 Shape... (2, 3) Our Array 2 Shape... (2, 3) Result (minimum)... [[ 6. nan nan] [22. 0. 0.]]
广告
数据结构
网络
关系数据库管理系统 (RDBMS)
操作系统
Java
iOS
HTML
CSS
Android
Python
C语言编程
C++
C#
MongoDB
MySQL
Javascript
PHP