Javascript 中的完备图类


在本代码中已注释掉了一些函数。你也可以切换到这些函数。我们还将队列、堆栈和优先队列类移动到了不同的模块中,可以使用 import 语句或 require 调用来导入这些类。以下是 Graph 类的完整实现 − 

例子

const Queue = require("./Queue");
const Stack = require("./Stack");
const PriorityQueue = require("./PriorityQueue");

class Graph {
   constructor() {
      this.edges = {};
      this.nodes = [];
   }

   addNode(node) {
      this.nodes.push(node);
      this.edges[node] = [];
   }

   addEdge(node1, node2, weight = 1) {
      this.edges[node1].push({ node: node2, weight: weight });
      this.edges[node2].push({ node: node1, weight: weight });
   }

   addDirectedEdge(node1, node2, weight = 1) {
      this.edges[node1].push({ node: node2, weight: weight });
   }

   // addEdge(node1, node2) {
      // this.edges[node1].push(node2);
      // this.edges[node2].push(node1);
   // }

   // addDirectedEdge(node1, node2) {
      // this.edges[node1].push(node2);
   // }

   display() {
      let graph = "";
      this.nodes.forEach(node => {
         graph += node + "->" + this.edges[node].map(n => n.node).join(", ") + "
";       });       console.log(graph);    }    BFS(node) {       let q = new Queue(this.nodes.length);       let explored = new Set();       q.enqueue(node);       explored.add(node);       while (!q.isEmpty()) {          let t = q.dequeue();          console.log(t);          this.edges[t].filter(n => !explored.has(n)).forEach(n => {             explored.add(n);             q.enqueue(n);          });       }    }    DFS(node) {       // Create a Stack and add our initial node in it       let s = new Stack(this.nodes.length);       let explored = new Set();       s.push(node);       // Mark the first node as explored       explored.add(node);       // We'll continue till our Stack gets empty       while (!s.isEmpty()) {          let t = s.pop();          // Log every element that comes out of the Stack          console.log(t);          // 1. In the edges object, we search for nodes this node is          // directly connected to.          // 2. We filter out the nodes that have already been explored.          // 3. Then we mark each unexplored node as explored and push it          // to the Stack.          this.edges[t].filter(n => !explored.has(n)).forEach(n => {             explored.add(n);             s.push(n);          });       }    }    topologicalSortHelper(node, explored, s) {       explored.add(node);       this.edges[node].forEach(n => {          if (!explored.has(n)) {             this.topologicalSortHelper(n, explored, s);          }       });       s.push(node);    }    topologicalSort() {       // Create a Stack and add our initial node in it       let s = new Stack(this.nodes.length);       let explored = new Set();       this.nodes.forEach(node => {          if (!explored.has(node)) {             this.topologicalSortHelper(node, explored, s);          }       });       while (!s.isEmpty()) {          console.log(s.pop());       }    }    BFSShortestPath(n1, n2) {       let q = new Queue(this.nodes.length);       let explored = new Set();       let distances = { n1: 0 };       q.enqueue(n1);       explored.add(n1);       while (!q.isEmpty()) {          let t = q.dequeue();          this.edges[t].filter(n => !explored.has(n)).forEach(n => {             explored.add(n);             distances[n] = distances[t] == undefined ? 1 : distances[t] + 1;             q.enqueue(n);          });       }       return distances[n2];    }    primsMST() {       // Initialize graph that'll contain the MST       const MST = new Graph();       if (this.nodes.length === 0) {          return MST;       }       // Select first node as starting node       let s = this.nodes[0];       // Create a Priority Queue and explored set       let edgeQueue = new PriorityQueue(this.nodes.length * this.nodes.length);       let explored = new Set();       explored.add(s);       MST.addNode(s);       // Add all edges from this starting node to the PQ taking weights as priority       this.edges[s].forEach(edge => {          edgeQueue.enqueue([s, edge.node], edge.weight);       });       // Take the smallest edge and add that to the new graph       let currentMinEdge = edgeQueue.dequeue();       while (!edgeQueue.isEmpty()) {          // COntinue removing edges till we get an edge with an unexplored node          while (!edgeQueue.isEmpty() && explored.has(currentMinEdge.data[1])) {             currentMinEdge = edgeQueue.dequeue();          }          let nextNode = currentMinEdge.data[1];          // Check again as queue might get empty without giving back unexplored element          if (!explored.has(nextNode)) {             MST.addNode(nextNode);             MST.addEdge(currentMinEdge.data[0], nextNode, currentMinEdge.priority);             // Again add all edges to the PQ             this.edges[nextNode].forEach(edge => {                edgeQueue.enqueue([nextNode, edge.node], edge.weight);             });             // Mark this node as explored explored.add(nextNode);             s = nextNode;          }       }       return MST;    }    kruskalsMST() {       // Initialize graph that'll contain the MST       const MST = new Graph();       this.nodes.forEach(node => MST.addNode(node));       if (this.nodes.length === 0) {          return MST;       }       // Create a Priority Queue       let edgeQueue = new PriorityQueue(this.nodes.length * this.nodes.length);       // Add all edges to the Queue:       for (let node in this.edges) {          this.edges[node].forEach(edge => {             edgeQueue.enqueue([node, edge.node], edge.weight);          });       }       let uf = new UnionFind(this.nodes);       // Loop until either we explore all nodes or queue is empty       while (!edgeQueue.isEmpty()) {          // Get the edge data using destructuring          let nextEdge = edgeQueue.dequeue();          let nodes = nextEdge.data;          let weight = nextEdge.priority;          if (!uf.connected(nodes[0], nodes[1])) {             MST.addEdge(nodes[0], nodes[1], weight);             uf.union(nodes[0], nodes[1]);          }       }       return MST;    }    djikstraAlgorithm(startNode) {       let distances = {};       // Stores the reference to previous nodes       let prev = {};       let pq = new PriorityQueue(this.nodes.length * this.nodes.length);       // Set distances to all nodes to be infinite except startNode       distances[startNode] = 0;       pq.enqueue(startNode, 0);       this.nodes.forEach(node => {          if (node !== startNode) distances[node] = Infinity;          prev[node] = null;       });       while (!pq.isEmpty()) {          let minNode = pq.dequeue();          let currNode = minNode.data;          let weight = minNode.priority;          this.edges[currNode].forEach(neighbor => {             let alt = distances[currNode] + neighbor.weight;             if (alt < distances[neighbor.node]) {                distances[neighbor.node] = alt;                prev[neighbor.node] = currNode;                pq.enqueue(neighbor.node, distances[neighbor.node]);             }          });       }       return distances;    }    floydWarshallAlgorithm() {       let dist = {};       for (let i = 0; i < this.nodes.length; i++) {          dist[this.nodes[i]] = {};          // For existing edges assign the dist to be same as weight          this.edges[this.nodes[i]].forEach(             e => (dist[this.nodes[i]][e.node] = e.weight)          );          this.nodes.forEach(n => {             // For all other nodes assign it to infinity             if (dist[this.nodes[i]][n] == undefined)             dist[this.nodes[i]][n] = Infinity;             // For self edge assign dist to be 0             if (this.nodes[i] === n) dist[this.nodes[i]][n] = 0;          });       }       this.nodes.forEach(i => {          this.nodes.forEach(j => {             this.nodes.forEach(k => {                // Check if going from i to k then from k to j is better                // than directly going from i to j. If yes then update                // i to j value to the new value                if (dist[i][k] + dist[k][j] < dist[i][j])                   dist[i][j] = dist[i][k] + dist[k][j];             });          });       });       return dist;    } } class UnionFind {    constructor(elements) {       // Number of disconnected components       this.count = elements.length;       // Keep Track of connected components       this.parent = {};       // Initialize the data structure such that all       // elements have themselves as parents       elements.forEach(e => (this.parent[e] = e));    }    union(a, b) {       let rootA = this.find(a);       let rootB = this.find(b);       // Roots are same so these are already connected.       if (rootA === rootB) return;       // Always make the element with smaller root the parent.       if (rootA < rootB) {          if (this.parent[b] != b) this.union(this.parent[b], a);          this.parent[b] = this.parent[a];       } else {          if (this.parent[a] != a) this.union(this.parent[a], b);          this.parent[a] = this.parent[b];       }    }    // Returns final parent of a node    find(a) {       while (this.parent[a] !== a) {          a = this.parent[a];       }       return a;    }    // Checks connectivity of the 2 nodes    connected(a, b) {       return this.find(a) === this.find(b);    } }

更新于:2020 年 6 月 15 日

147 次浏览

开启你的职业生涯

通过完成本课程获得认证

开始
广告