C++ 程序,用来求 n 个数的 GCD 和 LCM


这是求 n 个数的 GCD 和 LCM 的代码。两个或多个大于 0 的整数的 GCD 或最大公因子是能同时整除每个整数的最大整数。GCD 也称为最大公因数。

两个数的最小公倍数 (LCM) 是既是这两个数的倍数的最小数(不为零)。

算法

Begin
   Take two numbers as input
   Call the function gcd() two find out gcd of n numbers
   Call the function lcm() two find out lcm of n numbers
   gcd(number1, number2)
   Declare r, a, b
   Assign r=0
   a = (number1 greater than number2)? number1: number2
   b = (number1 less than number2)? number1: number2
   r = b
   While (a mod b not equal to 0)
      Do
         r = a mod b
         a=b
         b=r
      Return r
   Done
   lcm(number1, number2)
   Declare a
   a=(number1 greater than number2)?number1:number2
   While(true) do
   If
      (a mod number1 == 0 and a number2 == 0)
      Return a
      Increment a
   Done
End

示例代码

#include<iostream>
using namespace std;
int gcd(int m, int n) {
   int r = 0, a, b;
   a = (m > n) ? m : n;
   b = (m < n) ? m : n;
   r = b;
   while (a % b != 0) {
      r = a % b;
      a = b;
      b = r;
   }
   return r;
}
int lcm(int m, int n) {
   int a;
   a = (m > n) ? m: n;
   while (true) {
      if (a % m == 0 && a % n == 0)
         return a;
         ++a;
   }
}
int main(int argc, char **argv) {
   cout << "Enter the two numbers: ";
   int m, n;
   cin >> m >> n;
   cout << "The GCD of two numbers is: " << gcd(m, n) << endl;
   cout << "The LCM of two numbers is: " << lcm(m, n) << endl;
   return 0;
}

输出

Enter the two numbers:
7
6
The GCD of two numbers is: 1
The LCM of two numbers is: 42

更新于: 30-Jul-2019

4K+ 浏览量

开启你的职业生涯

完成课程以获得认证

开始
广告
© . All rights reserved.