在 C++ 中找到任意一对具有给定 GCD 和 LCM 的数
在本节中,我们将看到如何使用给定的 GCD 和 LCM 值获取对的数量。假设 GCD 和 LCM 值为 2 和 12。那么可能的数字对为 (2, 12)、(4, 6)、(6, 4) 和 (12, 2)。因此,我们的程序将找到这些对的数量。即 4。
让我们看看算法来了解解决这个问题的技术是什么。
算法
countPairs(gcd, lcm): Begin if lcm is nit divisible by gcd, then return 0 temp := lcm/gcd c := primeFactorCount(temp) res := shift 1 to the left c number of times return res End primeFactorCount(n): Begin count := 0 until n is not odd, increase count and divide n by 2 for i := 3, when i2 < n, increase i by 2, do if n is divisible by i, then increase count while n is divisible by i, do n := n / i done end if done if n > 2, then increase count by 1 return count End
示例
#include<iostream> #include<cmath> using namespace std; int primeFactorCount(int); int countPairs(int gcd, int lcm) { if(lcm % gcd != 0) return 0; int temp = lcm/gcd; return (1 << primeFactorCount(temp)); } int primeFactorCount(int n){ int count = 0; if(n%2 == 0){ //if n is divisible by 0, enter into the next part count++; while(n%2 == 0) n = n/2; } //now n is odd, so if we increase n by 2, all numbers will be odd for(int i = 3; i*i <= n; i = i + 2){ if(n%i == 0){ //if n is divisible by 0, enter into the next part count++; while(n%i == 0) n = n/i; } } if(n > 2) count++; return count; } int main() { cout << "Possible pairs of GCD = 2, and LCM = 12 is " <<countPairs(2, 12); }
输出
Possible pairs of GCD = 2, and LCM = 12 is 4
广告