C++程序借助斐波那契数列使用分而治之算法在有序序列中进行搜索
在这个C++程序中,我们实现了一个分而治之方法,使用斐波那契数列。使用斐波那契数列,我们计算数据数组的中间值来搜索数据项。这种方法的时间复杂度是O(log(n))。
算法
Begin Assign the data to the array in a sorted manner. Take input of the element to be searched. Call FibonacciSearch() function. Calculate the mid value using ‘start+fib[index-2]’ expression. If the chosen item is equal to the value at mid index, print result and return to main. If it is lesser than the value at mid index, proceed with the left sub-array. If it is more than the value at mid index, proceed with the right sub-array. If the calculated mid value is equal to either start or end then the item is not found in the array. End
示例代码
#include<iostream> using namespace std; void FibonacciSearch(int *a, int start, int end, int *fib, int index, int item) { int i, mid; mid = start+fib[index-2]; if(item == a[mid]) { cout<<"\n item found at "<<mid<<" index."; return; } else if(item == a[start]) { cout<<"\n item found at "<<start<<" index."; return; } else if(item == a[end]) { cout<<"\n item found at "<<end<<" index."; return; } else if(mid == start || mid == end) { cout<<"\nElement not found"; return; } else if(item > a[mid]) FibonacciSearch(a, mid, end, fib, index-1, item); else FibonacciSearch(a, start, mid, fib, index-2, item); } main() { int n, i, fib[20], a[10]={3, 7, 55, 86, 7, 15, 26, 30, 46, 95}; char ch; fib[0] = 0; fib[1] = 1; i = 1; while(fib[i] < 10) { i++; fib[i] = fib[i-1] + fib[i-2]; } up: cout<<"\nEnter the Element to be searched: "; cin>>n; FibonacciSearch(a, 0, 9, fib, i, n); cout<<"\n\n\tDo you want to search more...enter choice(y/n)?"; cin>>ch; if(ch == 'y' || ch == 'Y') goto up; return 0; } }
输出
Enter the Element to be searched: 26 item found at 6 index. Do you want to search more...enter choice(y/n)?y Enter the Element to be searched: 45 item not found Do you want to search more...enter choice(y/n)?n
广告