C++ 中使用分治法求凸包


在本教程中,我们将讨论一个程序,该程序用来查找给定一组点集的凸包。

凸包是包含给定所有点(位于边界或内部)的最小多边形凸多边形。

在这个程序中,我们将使用蛮力法将给定的点集分成更小的部分,然后最终合并它们来构建凸包。

示例

 实时演示

#include<bits/stdc++.h>
using namespace std;
//storing the center point of polygon
pair<int, int> mid;
//calculating the quadrant of
//a particular point
int quad(pair<int, int> p){
   if (p.first >= 0 && p.second >= 0)
   return 1;
   if (p.first <= 0 && p.second >= 0)
   return 2;
   if (p.first <= 0 && p.second <= 0)
   return 3;
   return 4;
}
//if line is touching the polygon
int calc_line(pair<int, int> a, pair<int, int> b,
pair<int, int> c){
   int res = (b.second-a.second)*(c.first-b.first) -
   (c.second-b.second)*(b.first-a.first);
   if (res == 0)
   return 0;
   if (res > 0)
   return 1;
   return -1;
}
//comparing functions for sorting
bool compare(pair<int, int> p1, pair<int, int> q1){
   pair<int, int> p = make_pair(p1.first - mid.first,
   p1.second - mid.second);
   pair<int, int> q = make_pair(q1.first - mid.first,
   q1.second - mid.second);
   int one = quad(p);
   int two = quad(q);
   if (one != two)
   return (one < two);
   return (p.second*q.first < q.second*p.first);
}
//finding the upper tangent for both polygons
vector<pair<int, int>> merger(vector<pair<int, int> > a,
vector<pair<int, int> > b){
   int n1 = a.size(), n2 = b.size();
   int ia = 0, ib = 0;
   for (int i=1; i<n1; i++)
   if (a[i].first > a[ia].first)
   ia = i;
   //calculating leftmost point of b
   for (int i=1; i<n2; i++)
   if (b[i].first < b[ib].first)
   ib=i;
   int inda = ia, indb = ib;
   bool done = 0;
   while (!done){
      done = 1;
      while (calc_line(b[indb], a[inda], a[(inda+1)%n1]) >=0)
      inda = (inda + 1) % n1;
      while (calc_line(a[inda], b[indb], b[(n2+indb-1)%n2]) <=0){
         indb = (n2+indb-1)%n2;
         done = 0;
      }
   }
   int uppera = inda, upperb = indb;
   inda = ia, indb=ib;
   done = 0;
   int g = 0;
   //calculating the lower tangent
   while (!done){
      done = 1;
      while (calc_line(a[inda], b[indb], b[(indb+1)%n2])>=0)
      indb=(indb+1)%n2;
      while (calc_line(b[indb], a[inda], a[(n1+inda-1)%n1])<=0){
      inda=(n1+inda-1)%n1;
      done=0;
   }
}
int lowera = inda, lowerb = indb;
vector<pair<int, int>> ret;
//merging the two polygons to get convex hull
int ind = uppera;
ret.push_back(a[uppera]);
while (ind != lowera){
   ind = (ind+1)%n1;
   ret.push_back(a[ind]);
}
ind = lowerb;
ret.push_back(b[lowerb]);
while (ind != upperb){
   ind = (ind+1)%n2;
   ret.push_back(b[ind]);
}
return ret;
}
//brute force algo to find convex hull
vector<pair<int, int>> bruteHull(vector<pair<int, int>> a){
   set<pair<int, int> >s;
   for (int i=0; i<a.size(); i++){
      for (int j=i+1; j<a.size(); j++){
         int x1 = a[i].first, x2 = a[j].first;
         int y1 = a[i].second, y2 = a[j].second;
         int a1 = y1-y2;
         int b1 = x2-x1;
         int c1 = x1*y2-y1*x2;
         int pos = 0, neg = 0;
         for (int k=0; k<a.size(); k++){
            if (a1*a[k].first+b1*a[k].second+c1 <= 0)
            neg++;
            if (a1*a[k].first+b1*a[k].second+c1 >= 0)
            pos++;
         }
         if (pos == a.size() || neg == a.size()){
            s.insert(a[i]);
            s.insert(a[j]);
         }
      }
   }
   vector<pair<int, int>>ret;
   for (auto e:s)
   ret.push_back(e);
   //moving through anti clockwise direction
   mid = {0, 0};
   int n = ret.size();
   for (int i=0; i<n; i++){
      mid.first += ret[i].first;
      mid.second += ret[i].second;
      ret[i].first *= n;
      ret[i].second *= n;
   }
   sort(ret.begin(), ret.end(), compare);
   for (int i=0; i<n; i++)
   ret[i] = make_pair(ret[i].first/n, ret[i].second/n);
   return ret;
}
//returning the value of convex hull
vector<pair<int, int>> divide(vector<pair<int, int>> a){
   if (a.size() <= 5)
   return bruteHull(a);
   // left contains the left half points
   // right contains the right half points
   vector<pair<int, int>>left, right;
   for (int i=0; i<a.size()/2; i++)
   left.push_back(a[i]);
   for (int i=a.size()/2; i<a.size(); i++)
   right.push_back(a[i]);
   vector<pair<int, int>>left_hull = divide(left);
   vector<pair<int, int>>right_hull = divide(right);
   //merging the convex hulls
   return merger(left_hull, right_hull);
}
int main(){
   vector<pair<int, int> > a;
   a.push_back(make_pair(0, 0));
   a.push_back(make_pair(1, -4));
   a.push_back(make_pair(-1, -5));
   a.push_back(make_pair(-5, -3));
   a.push_back(make_pair(-3, -1));
   a.push_back(make_pair(-1, -3));
   a.push_back(make_pair(-2, -2));
   a.push_back(make_pair(-1, -1));
   a.push_back(make_pair(-2, -1));
   a.push_back(make_pair(-1, 1));
   int n = a.size();
   sort(a.begin(), a.end());
   vector<pair<int, int> >ans = divide(a);
   cout << "Convex Hull:\n";
   for (auto e:ans)
   cout << e.first << " "<< e.second << endl;
   return 0;
}

输出

Convex Hull:
-5 -3
-1 -5
1 -4
0 0
-1 1

更新时间:2020-01-29

831 次查看

启动您的 职业

完成课程以获得认证

入门
广告