确定输入是否为 NumPy 掩码数组的实例
要确定输入是否为掩码数组的实例,请在 Python NumPy 中使用 **ma.isMaskedArray()** 方法。如果 x 是 MaskedArray 的实例,则此函数返回 True,否则返回 False。任何对象都作为输入被接受。
掩码数组是标准 numpy.ndarray 和掩码的组合。掩码要么是 nomask,表示关联数组的任何值均无效,要么是布尔值的数组,用于确定关联数组的每个元素的值是否有效。
步骤
首先,导入所需的库:
import numpy as np import numpy.ma as ma
使用 numpy.arange() 方法创建一个包含整数元素的 4x4 数组:
arr = np.arange(16).reshape((4,4)) print("Array...
", arr) print("
Array type...
", arr.dtype)
获取数组的维度:
print("
Array Dimensions...
",arr.ndim)
获取数组的形状:
print("
Our Masked Array Shape...
",arr.shape)
获取数组的元素数量:
print("
Elements in the Masked Array...
",arr.size)
创建一个掩码数组:
arr = ma.array(arr) arr[0, 1] = ma.masked arr[1, 1] = ma.masked arr[2, 1] = ma.masked arr[2, 2] = ma.masked arr[3, 0] = ma.masked arr[3, 2] = ma.masked arr[3, 3] = ma.masked
沿特定轴计算掩码元素的数量:
print("
The number of masked elements...
",ma.count_masked(arr, axis = 1))
返回掩码数组的掩码:
print("
The mask of a masked array)...
",ma.getmask(arr))
将掩码数组的数据作为 ndarray 返回:
print("
Data of a masked array as an ndarray...
",ma.getdata(arr))
要确定输入是否为掩码数组的实例,请在 Python NumPy 中使用 ma.isMaskedArray() 方法:
print("
Whether input is an instance of masked array?
",ma.isMaskedArray(arr))
示例
import numpy as np import numpy.ma as ma # Creating a 4x4 array with int elements using the numpy.arange() method arr = np.arange(16).reshape((4,4)) print("Array...
", arr) print("
Array type...
", arr.dtype) # Get the dimensions of the Array print("
Array Dimensions...
",arr.ndim) print("
Our Array type...
", arr.dtype) # Get the shape of the Array print("
Our Masked Array Shape...
",arr.shape) # Get the number of elements of the Array print("
Elements in the Masked Array...
",arr.size) # Create a masked array arr = ma.array(arr) arr[0, 1] = ma.masked arr[1, 1] = ma.masked arr[2, 1] = ma.masked arr[2, 2] = ma.masked arr[3, 0] = ma.masked arr[3, 2] = ma.masked arr[3, 3] = ma.masked # Count the number of masked elements along specific axis print("
The number of masked elements...
",ma.count_masked(arr, axis = 1)) # Return the mask of a masked array print("
The mask of a masked array)...
",ma.getmask(arr)) # Return the data of a masked array as an ndarray print("
Data of a masked array as an ndarray...
",ma.getdata(arr)) # To determine whether input is an instance of masked array, use the ma.isMaskedArray() method in Python Numpy print("
Whether input is an instance of masked array?
",ma.isMaskedArray(arr))
输出
Array... [[ 0 1 2 3] [ 4 5 6 7] [ 8 9 10 11] [12 13 14 15]] Array type... int64 Array Dimensions... 2 Our Array type... int64 Our Masked Array Shape... (4, 4) Elements in the Masked Array... 16 The number of masked elements... [1 1 2 3] The mask of a masked array)... [[False True False False] [False True False False] [False True True False] [ True False True True]] Data of a masked array as an ndarray... [[ 0 1 2 3] [ 4 5 6 7] [ 8 9 10 11] [12 13 14 15]] Whether input is an instance of masked array? True
广告