判断输入是否包含掩码值


要判断输入是否包含掩码值,可以使用Python Numpy中的ma.is_masked()方法。该方法接受任何对象作为输入,但除非输入是包含掩码值的MaskedArray,否则始终返回False。如果数组是包含掩码值的MaskedArray,则返回True;否则返回False。

掩码数组是标准numpy.ndarray和掩码的组合。掩码要么是nomask(表示关联数组的任何值均有效),要么是布尔数组,用于确定关联数组的每个元素的值是否有效。

步骤

首先,导入所需的库:

import numpy as np
import numpy.ma as ma

使用numpy.arange()方法创建一个包含整数元素的4x4数组:

arr = np.arange(16).reshape((4,4))
print("Array...
", arr) print("
Array type...
", arr.dtype)

获取数组的维度:

print("
Array Dimensions...
",arr.ndim)

获取数组的形状:

print("
Our Masked Array Shape...
",arr.shape)

获取数组的元素个数:

print("
Elements in the Masked Array...
",arr.size)

创建一个掩码数组:

arr = ma.array(arr)
arr[0, 1] = ma.masked
arr[1, 1] = ma.masked
arr[2, 1] = ma.masked
arr[2, 2] = ma.masked
arr[3, 0] = ma.masked
arr[3, 2] = ma.masked
arr[3, 3] = ma.masked

沿特定轴计算掩码元素的个数:

print("
The number of masked elements...
",ma.count_masked(arr, axis = 1))

返回掩码数组的掩码:

print("
The mask of a masked array)...
",ma.getmask(arr))

返回掩码数组的数据作为ndarray:

print("
Data of a masked array as an ndarray...
",ma.getdata(arr))

要判断输入是否包含掩码值,可以使用Python Numpy中的ma.is_masked()方法:

print("
Whether input has masked values?
",ma.is_masked(arr))

示例

import numpy as np
import numpy.ma as ma

# Creating a 4x4 array with int elements using the numpy.arange() method
arr = np.arange(16).reshape((4,4))
print("Array...
", arr) print("
Array type...
", arr.dtype) # Get the dimensions of the Array print("
Array Dimensions...
",arr.ndim) print("
Our Array type...
", arr.dtype) # Get the shape of the Array print("
Our Masked Array Shape...
",arr.shape) # Get the number of elements of the Array print("
Elements in the Masked Array...
",arr.size) # Create a masked array arr = ma.array(arr) arr[0, 1] = ma.masked arr[1, 1] = ma.masked arr[2, 1] = ma.masked arr[2, 2] = ma.masked arr[3, 0] = ma.masked arr[3, 2] = ma.masked arr[3, 3] = ma.masked # Count the number of masked elements along specific axis print("
The number of masked elements...
",ma.count_masked(arr, axis = 1)) # Return the mask of a masked array print("
The mask of a masked array)...
",ma.getmask(arr)) # Return the data of a masked array as an ndarray print("
Data of a masked array as an ndarray...
",ma.getdata(arr)) # To determine whether input has masked values, use the ma.is_masked() method in Python Numpy print("
Whether input has masked values?
",ma.is_masked(arr))

输出

Array...
[[ 0 1 2 3]
[ 4 5 6 7]
[ 8 9 10 11]
[12 13 14 15]]

Array type...
int64

Array Dimensions...
2

Our Array type...
int64

Our Masked Array Shape...
(4, 4)

Elements in the Masked Array...
16

The number of masked elements...
[1 1 2 3]

The mask of a masked array)...
[[False True False False]
[False True False False]
[False True True False]
[ True False True True]]

Data of a masked array as an ndarray...
[[ 0 1 2 3]
[ 4 5 6 7]
[ 8 9 10 11]
[12 13 14 15]]

Whether input has masked values?
True

更新于:2022年2月18日

1K+ 次查看

启动您的职业生涯

完成课程获得认证

开始学习
广告