判断输入是否包含掩码值
要判断输入是否包含掩码值,可以使用Python Numpy中的ma.is_masked()方法。该方法接受任何对象作为输入,但除非输入是包含掩码值的MaskedArray,否则始终返回False。如果数组是包含掩码值的MaskedArray,则返回True;否则返回False。
掩码数组是标准numpy.ndarray和掩码的组合。掩码要么是nomask(表示关联数组的任何值均有效),要么是布尔数组,用于确定关联数组的每个元素的值是否有效。
步骤
首先,导入所需的库:
import numpy as np import numpy.ma as ma
使用numpy.arange()方法创建一个包含整数元素的4x4数组:
arr = np.arange(16).reshape((4,4)) print("Array...
", arr) print("
Array type...
", arr.dtype)
获取数组的维度:
print("
Array Dimensions...
",arr.ndim)
获取数组的形状:
print("
Our Masked Array Shape...
",arr.shape)
获取数组的元素个数:
print("
Elements in the Masked Array...
",arr.size)
创建一个掩码数组:
arr = ma.array(arr) arr[0, 1] = ma.masked arr[1, 1] = ma.masked arr[2, 1] = ma.masked arr[2, 2] = ma.masked arr[3, 0] = ma.masked arr[3, 2] = ma.masked arr[3, 3] = ma.masked
沿特定轴计算掩码元素的个数:
print("
The number of masked elements...
",ma.count_masked(arr, axis = 1))
返回掩码数组的掩码:
print("
The mask of a masked array)...
",ma.getmask(arr))
返回掩码数组的数据作为ndarray:
print("
Data of a masked array as an ndarray...
",ma.getdata(arr))
要判断输入是否包含掩码值,可以使用Python Numpy中的ma.is_masked()方法:
print("
Whether input has masked values?
",ma.is_masked(arr))
示例
import numpy as np import numpy.ma as ma # Creating a 4x4 array with int elements using the numpy.arange() method arr = np.arange(16).reshape((4,4)) print("Array...
", arr) print("
Array type...
", arr.dtype) # Get the dimensions of the Array print("
Array Dimensions...
",arr.ndim) print("
Our Array type...
", arr.dtype) # Get the shape of the Array print("
Our Masked Array Shape...
",arr.shape) # Get the number of elements of the Array print("
Elements in the Masked Array...
",arr.size) # Create a masked array arr = ma.array(arr) arr[0, 1] = ma.masked arr[1, 1] = ma.masked arr[2, 1] = ma.masked arr[2, 2] = ma.masked arr[3, 0] = ma.masked arr[3, 2] = ma.masked arr[3, 3] = ma.masked # Count the number of masked elements along specific axis print("
The number of masked elements...
",ma.count_masked(arr, axis = 1)) # Return the mask of a masked array print("
The mask of a masked array)...
",ma.getmask(arr)) # Return the data of a masked array as an ndarray print("
Data of a masked array as an ndarray...
",ma.getdata(arr)) # To determine whether input has masked values, use the ma.is_masked() method in Python Numpy print("
Whether input has masked values?
",ma.is_masked(arr))
输出
Array... [[ 0 1 2 3] [ 4 5 6 7] [ 8 9 10 11] [12 13 14 15]] Array type... int64 Array Dimensions... 2 Our Array type... int64 Our Masked Array Shape... (4, 4) Elements in the Masked Array... 16 The number of masked elements... [1 1 2 3] The mask of a masked array)... [[False True False False] [False True False False] [False True True False] [ True False True True]] Data of a masked array as an ndarray... [[ 0 1 2 3] [ 4 5 6 7] [ 8 9 10 11] [12 13 14 15]] Whether input has masked values? True
广告