使用NumPy将无效数据掩盖并替换为填充值后的返回值
要返回将无效数据掩盖并替换为填充值后的输入,请在Python NumPy中使用**numpy.ma.fix_invalid()**方法。掩码数组是标准numpy.ndarray和掩码的组合。掩码要么是nomask(表示关联数组中没有无效值),要么是布尔值数组,用于确定关联数组的每个元素的值是否有效。
步骤
首先,导入所需的库:
import numpy as np import numpy.ma as ma
使用numpy.array()方法创建一个包含整数元素的数组:
arr = np.array([[65, 68, 81], [93, 33, 39], [73, 88, 51], [62, 45, 67]]) print("Array...
", arr) print("
Array type...
", arr.dtype)
获取数组的维度:
print("
Array Dimensions...
",arr.ndim)
创建一个掩码数组并将其中一些标记为无效:
maskArr = ma.masked_array(arr, mask =[[1, 1, 0], [ 0, 0, 0], [0, 1, 0], [0, 1, 0]]) print("
Our Masked Array
", maskArr) print("
Our Masked Array type...
", maskArr.dtype)
获取数组的维度:
print("
Our Masked Array Dimensions...
",arr.ndim)
获取数组的形状:
print("
Our Masked Array Shape...
",arr.shape)
获取数组的元素个数:
print("
Elements in the Masked Array...
",arr.size)
要返回将无效数据掩盖并替换为填充值后的输入,请在Python NumPy中使用numpy.ma.fix_invalid()方法
print("
Result...
",np.ma.fix_invalid(arr))
示例
import numpy as np import numpy.ma as ma # Create an array with int elements using the numpy.array() method arr = np.array([[65, 68, 81], [93, 33, 39], [73, 88, 51], [62, 45, 67]]) print("Array...
", arr) print("
Array type...
", arr.dtype) # Get the dimensions of the Array print("
Array Dimensions...
",arr.ndim) # Create a masked array and mask some of them as invalid maskArr = ma.masked_array(arr, mask =[[1, 1, 0], [ 0, 0, 0], [0, 1, 0], [0, 1, 0]]) print("
Our Masked Array
", maskArr) print("
Our Masked Array type...
", maskArr.dtype) # Get the dimensions of the Array print("
Our Masked Array Dimensions...
",arr.ndim) # Get the shape of the Array print("
Our Masked Array Shape...
",arr.shape) # Get the number of elements of the Array print("
Elements in the Masked Array...
",arr.size) # To return input with invalid data masked and replaced by a fill value, use the numpy.ma.fix_invalid() method in Python Numpy print("
Result...
",np.ma.fix_invalid(arr))
输出
Array... [[65 68 81] [93 33 39] [73 88 51] [62 45 67]] Array type... int64 Array Dimensions... 2 Our Masked Array [[-- -- 81] [93 33 39] [73 -- 51] [62 -- 67]] Our Masked Array type... int64 Our Masked Array Dimensions... 2 Our Masked Array Shape... (4, 3) Elements in the Masked Array... 12 Result... [[65 68 81] [93 33 39] [73 88 51] [62 45 67]]
广告