返回NumPy中具有浮点数据类型的掩码数组的默认填充值
要返回具有浮点数据类型的数组的默认填充值,请在 Python NumPy 中使用 **ma.default_fill_value()** 方法。默认填充值取决于输入数组的数据类型或输入标量的类型 -
数据类型 | 默认值 |
---|---|
布尔型 | 真 |
整型 | 999999 |
浮点型 | 1.e20 |
复数型 | 1.e20+0j |
对象型 | '?' |
字符串 | 'N/A' |
对于结构化类型,将返回一个结构化标量,其中每个字段都是其类型的默认填充值。对于子数组类型,填充值是一个包含默认标量填充值的大小相同的数组。
步骤
首先,导入所需的库 -
import numpy as np import numpy.ma as ma
使用 numpy.array() 方法创建具有浮点元素的数组 -
arr = np.array([[72.7, 68.2, 81.6], [93.4, 33.4, 76.2], [73.6, 88.1, 51.8], [62.3, 45.5, 67.9]]) print("Array...
", arr)
创建一个掩码数组并将其中一些标记为无效 -
maskArr = ma.masked_array(arr, mask =[[1, 1, 0], [ 0, 0, 0], [0, 1, 0], [0, 1, 0]]) print("
Our Masked Array...
", maskArr)
获取掩码数组的类型 -
print("
Our Masked Array type...
", maskArr.dtype)
获取掩码数组的维度 -
print("
Our Masked Array Dimensions...
",maskArr.ndim)
获取掩码数组的形状 -
print("
Our Masked Array Shape...
",maskArr.shape)
获取掩码数组的元素数量 -
print("
Number of elements in the Masked Array...
",maskArr.size)
要返回具有浮点数据类型的数组的默认填充值,请在 Python NumPy 中使用 ma.default_fill_value() 方法。默认填充值取决于输入数组的数据类型或输入标量的类型 -
print("
The default fill value...
",np.ma.default_fill_value(maskArr))
示例
import numpy as np import numpy.ma as ma # Create an array with float elements using the numpy.array() method arr = np.array([[72.7, 68.2, 81.6], [93.4, 33.4, 76.2], [73.6, 88.1, 51.8], [62.3, 45.5, 67.9]]) print("Array...
", arr) # Create a masked array and mask some of them as invalid maskArr = ma.masked_array(arr, mask =[[1, 1, 0], [ 0, 0, 0], [0, 1, 0], [0, 1, 0]]) print("
Our Masked Array...
", maskArr) # Get the type of the masked array print("
Our Masked Array type...
", maskArr.dtype) # Get the dimensions of the Masked Array print("
Our Masked Array Dimensions...
",maskArr.ndim) # Get the shape of the Masked Array print("
Our Masked Array Shape...
",maskArr.shape) # Get the number of elements of the Masked Array print("
Number of elements in the Masked Array...
",maskArr.size) # To return the default fill value for an array with float datatype, use the ma.default_fill_value() method in Python Numpy # The default filling value depends on the datatype of the input array or the type of the input scalar print("
The default fill value...
",np.ma.default_fill_value(maskArr))
输出
Array... [[72.7 68.2 81.6] [93.4 33.4 76.2] [73.6 88.1 51.8] [62.3 45.5 67.9]] Our Masked Array... [[-- -- 81.6] [93.4 33.4 76.2] [73.6 -- 51.8] [62.3 -- 67.9]] Our Masked Array type... float64 Our Masked Array Dimensions... 2 Our Masked Array Shape... (4, 3) Number of elements in the Masked Array... 12 The default fill value... 1e+20
广告