在NumPy中返回一个包含相同数据但具有新形状的掩码数组
要返回一个包含相同数据但具有新形状的掩码数组,请在NumPy中使用 **ma.MaskedArray.reshape()** 方法。赋予数组新的形状而无需更改其数据。新形状应与原始形状兼容。如果提供的是整数,则结果将是一个长度为该整数的一维数组。
顺序决定了数组数据是否应按C语言(行主序)或FORTRAN(列主序)顺序查看。返回一个包含相同数据但具有新形状的掩码数组。结果是对原始数组的视图;如果无法实现此目的,则会引发ValueError。
步骤
首先,导入所需的库:
import numpy as np import numpy.ma as ma
使用numpy.array()方法创建一个包含整数元素的数组:
arr = np.array([[49, 85, 45], [67, 33, 59]]) print("Array...
", arr) print("
Array type...
", arr.dtype)
获取数组的维度:
print("Array Dimensions...
",arr.ndim)
创建一个掩码数组并掩盖其中一些无效元素:
maskArr = ma.masked_array(arr, mask =[[0, 0, 1], [ 0, 1, 0]]) print("
Our Masked Array
", maskArr) print("
Our Masked Array type...
", maskArr.dtype)
获取掩码数组的维度:
print("
Our Masked Array Dimensions...
",maskArr.ndim)
获取掩码数组的形状:
print("
Our Masked Array Shape...
",maskArr.shape)
获取掩码数组的元素数量:
print("
Elements in the Masked Array...
",maskArr.size)
要返回一个包含相同数据但具有新形状的掩码数组,请使用ma.MaskedArray.reshape()方法。赋予数组新的形状而无需更改其数据。掩码数组的新形状设置为6x1作为参数。新形状应与原始形状兼容。如果提供的是整数,则结果将是一个长度为该整数的一维数组:
print("
Result...
",maskArr.reshape((6,1)))
示例
# Python ma.MaskedArray - Return a masked array containing the same data but with a new shape import numpy as np import numpy.ma as ma # Create an array with int elements using the numpy.array() method arr = np.array([[78, 85, 51], [56, 33, 97]]) print("Array...
", arr) print("
Array type...
", arr.dtype) # Get the dimensions of the Array print("
Array Dimensions...
",arr.ndim) # Create a masked array and mask some of them as invalid # The masked array is 1x6 maskArr = ma.masked_array(arr, mask =[[0, 1, 0, 0, 0, 1]]) print("
Our Masked Array
", maskArr) print("
Our Masked Array type...
", maskArr.dtype) # Get the dimensions of the Masked Array print("
Our Masked Array Dimensions...
",maskArr.ndim) # Get the shape of the Masked Array print("
Our Masked Array Shape...
",maskArr.shape) # Get the number of elements of the Masked Array print("
Elements in the Masked Array...
",maskArr.size) # To return a masked array containing the same data, but with a new shape, use the ma.MaskedArray.reshape() method in Numpy # Give a new shape to the array without changing its data # The new shape of the masked array is set to 6x1 as a parameter # The new shape should be compatible with the original shape. # If an integer is supplied, then the result will be a 1-D array of that length print("
Result...
",maskArr.reshape((6,1)))
输出
Array... [[78 85 51] [56 33 97]] Array type... int64 Array Dimensions... 2 Our Masked Array [[78 -- 51] [56 33 --]] Our Masked Array type... int64 Our Masked Array Dimensions... 2 Our Masked Array Shape... (2, 3) Elements in the Masked Array... 6 Result... [[78] [--] [51] [56] [33] [--]]
广告