返回一个包含相同数据但具有新形状的掩码数组,在 NumPy 中将其视为列主序
要返回一个包含相同数据但具有新形状的掩码数组,请在 NumPy 中使用 **ma.MaskedArray.reshape()** 方法。在不更改数据的情况下为数组赋予新的形状。使用“**order**”参数设置顺序。'F' 顺序确定数组数据是否应视为 FORTRAN 格式,即 F(列主序)。
新形状应与原始形状兼容。如果提供整数,则结果将是长度为该整数的一维数组。
order 参数确定数组数据是否应视为 C(行主序)或 FORTRAN(列主序)顺序。返回一个包含相同数据但具有新形状的掩码数组。结果是原始数组的视图;如果无法实现,则会引发 ValueError。
步骤
首先,导入所需的库 -
import numpy as np import numpy.ma as ma
使用 numpy.array() 方法创建一个包含整数元素的数组 -
arr = np.array([[49, 85, 45], [67, 33, 59]])
print("Array...
", arr)
print("
Array type...
", arr.dtype)获取数组的维度 -
print("Array Dimensions...
",arr.ndim)
创建一个掩码数组并将其中的某些元素标记为无效 -
maskArr = ma.masked_array(arr, mask =[[0, 0, 1], [ 0, 1, 0]])
print("
Our Masked Array
", maskArr)
print("
Our Masked Array type...
", maskArr.dtype)获取掩码数组的维度 -
print("
Our Masked Array Dimensions...
",maskArr.ndim)
获取掩码数组的形状 -
print("
Our Masked Array Shape...
",maskArr.shape)获取掩码数组的元素数量 -
print("
Elements in the Masked Array...
",maskArr.size)
返回一个包含相同数据但具有新形状的掩码数组,使用 ma.MaskedArray.reshape() 方法。在不更改数据的情况下为数组赋予新的形状。掩码数组的新形状设置为 6x1 作为参数。新形状应与原始形状兼容。如果提供整数,则结果将是长度为该整数的一维数组。使用“order”参数设置顺序。'F' 顺序确定数组数据是否应视为 FORTRAN 格式,即 F(列主序) -
print("
Result...
",maskArr.reshape((6,1),order='F'))示例
# Python ma.MaskedArray - Return a masked array containing the same data but with a new shape
# viewed as column-major order
import numpy as np
import numpy.ma as ma
# Create an array with int elements using the numpy.array() method
arr = np.array([[78, 85, 51], [56, 33, 97]])
print("Array...
", arr)
print("
Array type...
", arr.dtype)
# Get the dimensions of the Array
print("
Array Dimensions...
",arr.ndim)
# Create a masked array and mask some of them as invalid
# The masked array is 1x6
maskArr = ma.masked_array(arr, mask =[[0, 1, 0, 0, 0, 1]])
print("
Our Masked Array
", maskArr)
print("
Our Masked Array type...
", maskArr.dtype)
# Get the dimensions of the Masked Array
print("
Our Masked Array Dimensions...
",maskArr.ndim)
# Get the shape of the Masked Array
print("
Our Masked Array Shape...
",maskArr.shape)
# Get the number of elements of the Masked Array
print("
Elements in the Masked Array...
",maskArr.size)
# To return a masked array containing the same data, but with a new shape, use the ma.MaskedArray.reshape() method in Numpy
# Give a new shape to the array without changing its data
# The new shape of the masked array is set to 6x1 as a parameter
# The new shape should be compatible with the original shape.
# If an integer is supplied, then the result will be a 1-D array of that length
# The order is set using the "order" parameter
# The 'F' order determines whether the array data should be viewed as in FORTRAN i.e F (column-major)
print("
Result...
",maskArr.reshape((6,1),order='F'))输出
Array... [[78 85 51] [56 33 97]] Array type... int64 Array Dimensions... 2 Our Masked Array [[78 -- 51] [56 33 --]] Our Masked Array type... int64 Our Masked Array Dimensions... 2 Our Masked Array Shape... (2, 3) Elements in the Masked Array... 6 Result... [[78] [56] [--] [33] [51] [--]]
广告
数据结构
网络
关系型数据库管理系统
操作系统
Java
iOS
HTML
CSS
Android
Python
C 编程
C++
C#
MongoDB
MySQL
Javascript
PHP