返回一个掩码数组,包含相同的数据,但形状在NumPy中被视为行主序
要返回一个包含相同数据但具有新形状的掩码数组,请在NumPy中使用**ma.MaskedArray.reshape()**方法。赋予数组一个新形状而不改变其数据。“**order**”参数设置顺序。“C”顺序决定数组数据是否应按C语言(行主序)的方式查看。
新形状应该与原始形状兼容。如果提供一个整数,则结果将是一个具有该长度的一维数组。
order参数决定数组数据是按C语言(行主序)还是FORTRAN(列主序)顺序查看。返回一个包含相同数据但具有新形状的掩码数组。结果是对原始数组的视图;如果无法实现,则会引发ValueError。
步骤
首先,导入所需的库:
import numpy as np import numpy.ma as ma
使用numpy.array()方法创建一个包含整数元素的数组:
arr = np.array([[49, 85, 45], [67, 33, 59]]) print("Array...
", arr) print("
Array type...
", arr.dtype)
获取数组的维度:
print("Array Dimensions...
",arr.ndim)
创建一个掩码数组,并将其中一些标记为无效:
maskArr = ma.masked_array(arr, mask =[[0, 0, 1], [ 0, 1, 0]]) print("
Our Masked Array
", maskArr) print("
Our Masked Array type...
", maskArr.dtype)
获取掩码数组的维度:
print("
Our Masked Array Dimensions...
",maskArr.ndim)
获取掩码数组的形状:
print("
Our Masked Array Shape...
",maskArr.shape)
获取掩码数组的元素个数:
print("
Elements in the Masked Array...
",maskArr.size)
要返回一个包含相同数据但具有新形状的掩码数组,请使用ma.MaskedArray.reshape()。顺序由“order”参数设置。“C”顺序决定数组数据是否应按C语言(行主序)的方式查看:
print("
Result...
",maskArr.reshape((6,1),order='C'))
示例
# Python ma.MaskedArray - Return a masked array containing the same data but with a new shape # viewed as row-major order import numpy as np import numpy.ma as ma # Create an array with int elements using the numpy.array() method arr = np.array([[78, 85, 51], [56, 33, 97]]) print("Array...
", arr) print("
Array type...
", arr.dtype) # Get the dimensions of the Array print("
Array Dimensions...
",arr.ndim) # Create a masked array and mask some of them as invalid # The masked array is 1x6 maskArr = ma.masked_array(arr, mask =[[0, 1, 0, 0, 0, 1]]) print("
Our Masked Array
", maskArr) print("
Our Masked Array type...
", maskArr.dtype) # Get the dimensions of the Masked Array print("
Our Masked Array Dimensions...
",maskArr.ndim) # Get the shape of the Masked Array print("
Our Masked Array Shape...
",maskArr.shape) # Get the number of elements of the Masked Array print("
Elements in the Masked Array...
",maskArr.size) # To return a masked array containing the same data, but with a new shape, use the ma.MaskedArray.reshape() method in Numpy # Give a new shape to the array without changing its data # The new shape of the masked array is set to 6x1 as a parameter # The new shape should be compatible with the original shape. # If an integer is supplied, then the result will be a 1-D array of that length # The order is set using the "order" parameter # The 'C' order determines whether the array data should be viewed as in C (row-major) print("
Result...
",maskArr.reshape((6,1),order='C'))
输出
Array... [[78 85 51] [56 33 97]] Array type... int64 Array Dimensions... 2 Our Masked Array [[78 -- 51] [56 33 --]] Our Masked Array type... int64 Our Masked Array Dimensions... 2 Our Masked Array Shape... (2, 3) Elements in the Masked Array... 6 Result... [[78] [--] [51] [56] [33] [--]]
广告