在Python中对具有多维系数的切比雪夫级数沿轴1求导
在Python NumPy中,使用`polynomial.chebder()`方法可以对切比雪夫级数求导。该方法返回导数的切比雪夫级数。沿轴返回m次微分的切比雪夫级数系数c。每次迭代结果都乘以scl。参数c是沿每个轴从低到高次幂的系数数组,例如:[1,2,3]表示级数1*T_0 + 2*T_1 + 3*T_2,而[[1,2],[1,2]]表示1*T_0(x)*T_0(y) + 1*T_1(x)*T_0(y) + 2*T_0(x)*T_1(y) + 2*T_1(x)*T_1(y)(如果axis=0是x,axis=1是y)。
第一个参数是c,一个切比雪夫级数系数数组。如果c是多维的,不同的轴对应于不同的变量,每个轴的次数由相应的索引给出。第二个参数是m,进行微分的次数,必须是非负数。(默认值:1)。第三个参数是scl,即每次微分都乘以scl。最终结果是乘以scl**m。这是用于变量的线性变化。(默认值:1)。第四个参数是axis,即进行微分的轴。(默认值:0)。
步骤
首先,导入所需的库:
import numpy as np from numpy.polynomial import chebyshev as C
创建一个切比雪夫级数系数的多维数组:
c = np.arange(4).reshape(2,2)
显示系数数组:
print("Our coefficient Array...\n",c)
检查维度:
print("\nDimensions of our Array...\n",c.ndim)
获取数据类型:
print("\nDatatype of our Array object...\n",c.dtype)
获取形状:
print("\nShape of our Array object...\n",c.shape)
在Python NumPy中,使用`polynomial.chebder()`方法可以对切比雪夫级数求导。该方法返回导数的切比雪夫级数:
print("\nResult...\n",C.chebder(c, axis = 1))
示例
import numpy as np from numpy.polynomial import chebyshev as C # Create a multidimensional array of Chebyshev series coefficients c = np.arange(4).reshape(2,2) # Display the coefficient array print("Our coefficient Array...\n",c) # Check the Dimensions print("\nDimensions of our Array...\n",c.ndim) # Get the Datatype print("\nDatatype of our Array object...\n",c.dtype) # Get the Shape print("\nShape of our Array object...\n",c.shape) # To differentiate a Chebyshev series, use the polynomial.chebder() method in Python Numpy. print("\nResult...\n",C.chebder(c, axis = 1))
输出
Our coefficient Array... [[0 1] [2 3]] Dimensions of our Array... 2 Datatype of our Array object... int64 Shape of our Array object... (2, 2) Result... [[1.] [3.]]
广告