在Python中微分具有多维系数的Hermite_e级数
要微分Hermite_e级数,请使用Python中的hermite_e.hermeder()方法。第一个参数c是Hermite_e级数系数的数组。如果c是多维的,则不同的轴对应于不同的变量,每个轴的次数由相应的索引给出。
第二个参数m是导数的次数,必须是非负数。(默认值:1)。第三个参数scl是一个标量。每次微分都乘以scl。最终结果是乘以scl**m。这是用于变量的线性变化。(默认值:1)。第四个参数axis是进行微分的轴。(默认值:0)。
步骤
首先,导入所需的库:
import numpy as np from numpy.polynomial import hermite_e as H s
创建一个多维系数数组:
c = np.arange(4).reshape(2,2)
显示数组:
print("Our Array...\n",c)
检查维度:
print("\nDimensions of our Array...\n",c.ndim)
获取数据类型:
print("\nDatatype of our Array object...\n",c.dtype)
获取形状:
print("\nShape of our Array object...\n",c.shape)
要微分Hermite_e级数,请使用Python中的hermite_e.hermeder()方法:
print("\nResult...\n",H.hermeder(c))
示例
import numpy as np from numpy.polynomial import hermite_e as H # Create a multidimensional array of coefficients c = np.arange(4).reshape(2,2) # Display the array print("Our Array...\n",c) # Check the Dimensions print("\nDimensions of our Array...\n",c.ndim) # Get the Datatype print("\nDatatype of our Array object...\n",c.dtype) # Get the Shape print("\nShape of our Array object...\n",c.shape) # To differentiate a Hermite_e series, use the hermite_e.hermeder() method in Python print("\nResult...\n",H.hermeder(c))
输出
Our Array... [[0 1] [2 3]] Dimensions of our Array... 2 Datatype of our Array object... int64 Shape of our Array object... (2, 2) Result... [[2. 3.]]
广告