- Trending Categories
- Data Structure
- Networking
- RDBMS
- Operating System
- Java
- MS Excel
- iOS
- HTML
- CSS
- Android
- Python
- C Programming
- C++
- C#
- MongoDB
- MySQL
- Javascript
- PHP
- Physics
- Chemistry
- Biology
- Mathematics
- English
- Economics
- Psychology
- Social Studies
- Fashion Studies
- Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Find the roots of the quadratic equations by using the quadratic formula in each of the following:
\( 2 x^{2}-3 x-5=0 \)
To do:
We have to find the roots of the given quadratic equations.
Solution:
(i) $2x^2-3x - 5 = 0$
The above equation is of the form $ax^2 + bx + c = 0$, where $a = 2, b = -3$ and $c = - 5$
Discriminant $\mathrm{D} =b^{2}-4 a c$
$=(-3)^{2}-4 \times 2(-5)$
$=9+40$
$=49$
$\mathrm{D}>0$
Let the roots of the equation are $\alpha$ and $\beta$
$\alpha =\frac{-b+\sqrt{\mathrm{D}}}{2 a}$
$=\frac{-(-3)+\sqrt{49}}{2(2)}$
$=\frac{3+7}{4}$
$=\frac{10}{4}$
$=\frac{5}{2}$
$\beta =\frac{-b-\sqrt{\mathrm{D}}}{2 a}$
$=\frac{-(-3)-\sqrt{49}}{2(2)}$
$=\frac{3-7}{4}$
$=\frac{-4}{4}$
$=-1$
Hence, the roots of the given quadratic equation are $\frac{5}{2}, -1$.
(ii) $5x^2+13x + 8 = 0$
The above equation is of the form $ax^2 + bx + c = 0$, where $a = 5, b = 13$ and $c = 8$
Discriminant $\mathrm{D} =b^{2}-4 a c$
$=(13)^{2}-4 \times 5\times8$
$=169-160$
$=9$
$\mathrm{D}>0$
Let the roots of the equation are $\alpha$ and $\beta$
$\alpha =\frac{-b+\sqrt{\mathrm{D}}}{2 a}$
$=\frac{-13+\sqrt{9}}{2(5)}$
$=\frac{-13+3}{10}$
$=\frac{-10}{10}$
$=-1$
$\beta =\frac{-b-\sqrt{\mathrm{D}}}{2 a}$
$=\frac{-13-\sqrt{9}}{2(5)}$
$=\frac{-13-3}{10}$
$=\frac{-16}{10}$
$=-\frac{8}{5}$
Hence, the roots of the given quadratic equation are $-\frac{8}{5}, -1$.
(iii) $-3x^2+5x + 12 = 0$
The above equation is of the form $ax^2 + bx + c = 0$, where $a = -3, b = 5$ and $c = 12$
Discriminant $\mathrm{D} =b^{2}-4 a c$
$=(5)^{2}-4 \times (-3)\times12$
$=25+144$
$=169$
$\mathrm{D}>0$
Let the roots of the equation are $\alpha$ and $\beta$
$\alpha =\frac{-b+\sqrt{\mathrm{D}}}{2 a}$
$=\frac{-5+\sqrt{169}}{2(-3)}$
$=\frac{-5+13}{-6}$
$=\frac{8}{-6}$
$=-\frac{4}{3}$
$\beta =\frac{-b-\sqrt{\mathrm{D}}}{2 a}$
$=\frac{-5-\sqrt{169}}{2(-3)}$
$=\frac{-5-13}{-6}$
$=\frac{-18}{-6}$
$=3$
Hence, the roots of the given quadratic equation are $-\frac{4}{3}, 3$.
(iv) $-x^2+7x - 10 = 0$
The above equation is of the form $ax^2 + bx + c = 0$, where $a = -1, b = 7$ and $c =-10$
Discriminant $\mathrm{D} =b^{2}-4 a c$
$=(7)^{2}-4 \times (-1)\times(-10)$
$=49-40$
$=9$
$\mathrm{D}>0$
Let the roots of the equation are $\alpha$ and $\beta$
$\alpha =\frac{-b+\sqrt{\mathrm{D}}}{2 a}$
$=\frac{-7+\sqrt{9}}{2(-1)}$
$=\frac{-7+3}{-2}$
$=\frac{-4}{-2}$
$=2$
$\beta =\frac{-b-\sqrt{\mathrm{D}}}{2 a}$
$=\frac{-7-\sqrt{9}}{2(-1)}$
$=\frac{-7-3}{-2}$
$=\frac{-10}{-2}$
$=5$
Hence, the roots of the given quadratic equation are $2, 5$.
(v) \( x^{2}+2 \sqrt{2} x-6=0 \)
The above equation is of the form $ax^2 + bx + c = 0$, where $a = 1, b = 2 \sqrt{2}$ and $c =-6$
Discriminant $\mathrm{D} =b^{2}-4 a c$
$=(2 \sqrt{2})^{2}-4 \times (1)\times(-6)$
$=8+24$
$=32$
$\mathrm{D}>0$
Let the roots of the equation are $\alpha$ and $\beta$
$\alpha =\frac{-b+\sqrt{\mathrm{D}}}{2 a}$
$=\frac{-2 \sqrt{2}+\sqrt{32}}{2(1)}$
$=\frac{-2 \sqrt{2}+4\sqrt2}{2}$
$=\frac{2\sqrt2}{2}$
$=\sqrt2$
$\beta =\frac{-b-\sqrt{\mathrm{D}}}{2 a}$
$=\frac{-2 \sqrt{2}-\sqrt{32}}{2(1)}$
$=\frac{-2 \sqrt{2}-4\sqrt{2}}{2}$
$=\frac{-6\sqrt{2}}{2}$
$=-3\sqrt2$
Hence, the roots of the given quadratic equation are $\sqrt2, -3\sqrt2$.
(vi) We know that for a quadratic equation $ax^{2} +bx+c=0$
$x=\frac{-b\pm \sqrt{b^{2} -4ac}}{2a}$
On comparing it to the given quadratic equation $a=1,b=-3\sqrt{5} \ and\ c=10$
On substituting these values of $\displaystyle a,\ b\ and\ c$
$x=\frac{-( -3\surd 5) \pm \sqrt{( -3\surd 5)^{2} -4\times 1\times 10}}{2\times 1}$
$x=\frac{3\sqrt{5} \pm \sqrt{( 45-40)}}{2}$
$x=\frac{\left( 3\sqrt{5} \pm \sqrt{5}\right)}{2}$
If $x=\frac{\left( 3\sqrt{5} +\sqrt{5}\right)}{2}$
$\Rightarrow x=\frac{4\sqrt{5}}{2} $
$\Rightarrow x=2\sqrt{5}$
If $x=\frac{\left( 3\sqrt{5} -\sqrt{5}\right)}{2}$
$\Rightarrow x=\frac{\left( 2\sqrt{5}\right)}{2}$
$\Rightarrow x=\sqrt{5}$
$\therefore x=2\sqrt{5}, \ \sqrt{5}$
(vii) \( \frac{1}{2} x^{2}-\sqrt{11} x+1=0 \)
The above equation is of the form $ax^2 + bx + c = 0$, where $a = \frac{1}{2}, b = -\sqrt{11}$ and $c =1$
Discriminant $\mathrm{D} =b^{2}-4 a c$
$=(-\sqrt{11})^{2}-4 \times \frac{1}{2} \times 1$
$=11-2$
$=9$
$\mathrm{D}>0$
Let the roots of the equation are $\alpha$ and $\beta$
$\alpha =\frac{-b+\sqrt{\mathrm{D}}}{2 a}$
$=\frac{-(-\sqrt{11})+\sqrt{9}}{2(\frac{1}{2})}$
$=\frac{\sqrt{11}+3}{1}$
$=3+\sqrt{11}$
$\beta =\frac{-b-\sqrt{\mathrm{D}}}{2 a}$
$=\frac{-(-\sqrt{11})-\sqrt{9}}{2(\frac{1}{2})}$
$=\frac{\sqrt{11}-3}{1}$
$=-3+\sqrt{11}$
Hence, the roots of the given quadratic equation are $3+\sqrt{11}, -3+\sqrt{11}$.