如何基于Auto MPG数据集使用TensorFlow评估模型?


TensorFlow是谷歌提供的机器学习框架。它是一个开源框架,与Python结合使用,用于实现算法、深度学习应用程序等等。它用于研究和生产目的。

可以使用以下代码行在Windows上安装“tensorflow”包:

pip install tensorflow

张量是TensorFlow中使用的数据结构。它有助于连接流图中的边。此流图称为“数据流图”。张量只不过是多维数组或列表。

回归问题的目标是预测连续或离散变量的输出,例如价格、概率、是否会下雨等等。

我们使用的数据集称为“Auto MPG”数据集。它包含1970年代和1980年代汽车的燃油效率。它包括重量、马力、排量等属性。有了这些,我们需要预测特定车辆的燃油效率。

我们使用Google Colaboratory运行以下代码。Google Colab或Colaboratory有助于在浏览器上运行Python代码,无需任何配置,并且可以免费访问GPU(图形处理单元)。Colaboratory构建在Jupyter Notebook之上。以下是代码片段:

示例

def plot_loss(history):
   plt.plot(history.history['loss'], label='loss')
   plt.plot(history.history['val_loss'], label='val_loss')
   plt.ylim([0, 10])
   plt.xlabel('Epoch')
   plt.ylabel('Error [MPG]')
   plt.legend()
   plt.grid(True)

plot_loss(history)
test_results = {}

test_results['hrspwr_model'] = hrspwr_model.evaluate(
   test_features['Horsepower'],
   test_labels, verbose=0)

代码来源https://tensorflowcn.cn/tutorials/keras/regression

输出

解释

  • “evaluate”函数用于了解模型对从未见过的数据的泛化程度。

  • 此数据在控制台上可视化。

更新于:2021年1月20日

77 次浏览

启动您的职业生涯

完成课程后获得认证

开始
广告