Numpy中输入指数和的对数(以2为底)
要获取输入指数和的对数(以2为底),可以使用Python Numpy中的**numpy.logaddexp()**方法。
计算**log2(2**x1 + 2**x2)**。此函数在机器学习中很有用,当计算出的事件概率可能非常小,以至于超出普通浮点数的范围时。在这种情况下,可以使用计算出的概率的以2为底的对数。此函数允许以这种方式存储的概率相加。
NumPy 提供了全面的数学函数、随机数生成器、线性代数例程、傅里叶变换等。它支持各种硬件和计算平台,并且与分布式、GPU 和稀疏数组库配合良好。
步骤
首先,导入所需的库 -
import numpy as np
以2为底的对数输入 -
one = np.log2(2e-50) two = np.log2(3.2e-50)
显示对数输入 -
print("Value 1...
", one)
print("Value 2...
", two)要获取输入指数和的对数(以2为底),可以使用numpy.logaddexp()方法 -
res = np.logaddexp(one, two)
print("
Logarithm of the sum of exponentiations of the inputs in base 2...
",res)示例
import numpy as np
# Calculates log2(2**x1 + 2**x2).
# This function is useful in machine learning when the calculated probabilities of events may be so small
# as to exceed the range of normal floating point numbers.
# In such cases the base-2 logarithm of the calculated probability can be used instead.
# This function allows adding probabilities stored in such a fashion.
# Log2 input
one = np.log2(2e-50)
two = np.log2(3.2e-50)
# Display the log input
print("Value 1...
", one)
print("Value 2...
", two)
# To get the Logarithm of the sum of exponentiations of the inputs in base 2, use the numpy.logaddexp() method in Python Numpy
res = np.logaddexp(one, two)
print("
Logarithm of the sum of exponentiations of the inputs in base 2...
",res)输出
Value 1... -165.09640474436813 Value 2... -164.41833283925547 Logarithm of the sum of exponentiations of the inputs in base 2... -164.00781734564688
广告
数据结构
网络
关系数据库管理系统
操作系统
Java
iOS
HTML
CSS
Android
Python
C语言编程
C++
C#
MongoDB
MySQL
Javascript
PHP