C++中检验矩阵是否对称的程序
在线性代数中,当且仅当矩阵的转置等于矩阵本身时,矩阵 M[][]才被称为对称矩阵。矩阵的转置是指沿着对角线翻转矩阵,这会导致矩阵的行和列索引互换。
以下是对称矩阵示例 −
$$\begin{bmatrix} 1 & 4 & 7 \ 4 & 5 & 6 \ 7 & 6 & 9 \ \end {bmatrix} \Rightarrow \begin{bmatrix} 1 & 4 & 7 \ 4 & 5 & 6 \ 7 & 6 & 9 \ \end{bmatrix}$$
上面的矩阵是对称矩阵,我们取矩阵中左侧的矩阵进行转置,结果与矩阵自身相等。
示例
Input: arr1[][n] = { { 1, 2, 3 }, { 2, 2, 4 }, { 3, 4, 1 } }; Output: its a symmetric matrix Input: arr1[][n] = { { 1, 7, 3 }, { 2, 9, 5 }, { 4, 6, 8 } }; Output: its not a symmetric matrix
方法
我们可以遵循以下步骤 −
- 1. 取一个矩阵,并将其转置存储在另一个矩阵中。
- 2. 检查生成矩阵是否与输入矩阵相同。
算法
Start Step 1 -> define macro as #define n 10 Step 2 -> declare function to find transporse of a matrix void transpose(int arr1[][n], int arr2[][n], int a) Loop For int i = 0 and i < a and i++ Loop For int j = 0 and j < a and j++ Set arr2[i][j] = arr1[j][i] End End Step 3 -> declare function to check symmetric or not bool check(int arr1[][n], int a) declare variable as int arr2[a][n] Call transpose(arr1, arr2, a) Loop For int i = 0 and i < a and i++ Loop For int j = 0 and j < a and j++ IF (arr1[i][j] != arr2[i][j]) return false End End End Return true Step 4 -> In main() Declare variable as int arr1[][n] = { { 1, 2, 3 }, { 2, 2, 4 }, { 3, 4, 1 } } IF (check(arr1, 3)) Print its a symmetric matrix Else Print its not a symmetric matrix Stop
示例
#include <iostream> #define n 10 using namespace std; //find transporse of a matrix void transpose(int arr1[][n], int arr2[][n], int a){ for (int i = 0; i < a; i++) for (int j = 0; j < a; j++) arr2[i][j] = arr1[j][i]; } //check symmetric or not bool check(int arr1[][n], int a){ int arr2[a][n]; transpose(arr1, arr2, a); for (int i = 0; i < a; i++) for (int j = 0; j < a; j++) if (arr1[i][j] != arr2[i][j]) return false; return true; } int main(){ int arr1[][n] = { { 1, 2, 3 }, { 2, 2, 4 }, { 3, 4, 1 } }; if (check(arr1, 3)) cout << "its a symmetric matrix"; else cout << "its not a symmetric matrix"; return 0; }
输出
its a symmetric matrix
广告