Python Pandas——合并一対一关系的 DataFrame
要合并 Pandas DataFrame,请使用 merge() 函数。在 merge() 函数的“validate”参数下,这两个 DataFrame 都会实现 **一对一关系**,即 -
validate = “one-to-one” or validate = “1:1”
一对多关系检查合并键在左侧和右侧数据集里是否唯一。
首先,创建第一个 DataFrame -
dataFrame1 = pd.DataFrame(
{
"Car": ['BMW', 'Lexus', 'Audi', 'Mustang', 'Bentley', 'Jaguar'],"Units": [100, 150, 110, 80, 110, 90]
}
)现在,创建第二个 DataFrame -
dataFrame2 = pd.DataFrame(
{
"Car": ['BMW', 'Lexus', 'Tesla', 'Mustang', 'Mercedes', 'Jaguar'],"Reg_Price": [7000, 1500, 5000, 8000, 9000, 6000]
}
)示例
以下为代码 -
#
# Merge Pandas DataFrame with one-to-one relation
#
import pandas as pd
# Create DataFrame1
dataFrame1 = pd.DataFrame(
{
"Car": ['BMW', 'Lexus', 'Audi', 'Mustang', 'Bentley', 'Jaguar'],"Units": [100, 150, 110, 80, 110, 90]
}
)
print("DataFrame1 ...\n",dataFrame1)
# Create DataFrame2
dataFrame2 = pd.DataFrame(
{
"Car": ['BMW', 'Lexus', 'Tesla', 'Mustang', 'Mercedes', 'Jaguar'],"Reg_Price": [7000, 1500, 5000, 8000, 9000, 6000]
}
)
print("\nDataFrame2 ...\n",dataFrame2)
# merge DataFrames with "one-to-one" in "validate" parameter
mergedRes = pd.merge(dataFrame1, dataFrame2, validate ="one_to_one")
print("\nMerged dataframe with one-to-one relation...\n", mergedRes)输出
会生成以下输出 -
DataFrame1 ... Car Units 0 BMW 100 1 Lexus 150 2 Audi 110 3 Mustang 80 4 Bentley 110 5 Jaguar 90 DataFrame2 ... Car Reg_Price 0 BMW 7000 1 Lexus 1500 2 Tesla 5000 3 Mustang 8000 4 Mercedes 9000 5 Jaguar 6000 Merged dataframe with one-to-one relation Car Units Reg_Price 0 BMW 100 7000 1 Lexus 150 1500 2 Mustang 80 8000 3 Jaguar 90 6000
广 告
数据结构
网络
RDBMS
操作系统
Java
iOS
HTML
CSS
Android
Python
C 编程
C++
C#
MongoDB
MySQL
Javascript
PHP