使用公用列合并 Pandas DataFrame
为了合并两个具有公用列的 Pandas DataFrame,使用 merge() 函数并设置 ON 参数为列名。
首先,让我们使用别名导入库 pandas −
import pandas as pd
让我们创建第一个 DataFrame −
dataFrame1 = pd.DataFrame(
{
"Car": ['BMW', 'Lexus', 'Audi', 'Mustang', 'Bentley', 'Jaguar'],"Units": [100, 150, 110, 80, 110, 90]
}
)接下来,创建第二个 DataFrame −
dataFrame2 = pd.DataFrame(
{
"Car": ['BMW', 'Lexus', 'Audi', 'Mustang', 'Mercedes', 'Jaguar'],"Reg_Price": [7000, 1500, 5000, 8000, 9000, 6000]
}
)现在,使用列“Car”合并两个 DataFrames −
mergedRes = pd.merge(dataFrame1, dataFrame2, on ='Car')
示例
以下是完整代码 −
import pandas as pd
# Create DataFrame1
dataFrame1 = pd.DataFrame(
{
"Car": ['BMW', 'Lexus', 'Audi', 'Mustang', 'Bentley', 'Jaguar'],"Units": [100, 150, 110, 80, 110, 90]
}
)
print"DataFrame1 ...\n",dataFrame1
# Create DataFrame2
dataFrame2 = pd.DataFrame(
{
"Car": ['BMW', 'Lexus', 'Audi', 'Mustang', 'Mercedes', 'Jaguar'],"Reg_Price": [7000, 1500, 5000, 8000, 9000, 6000]
}
)
print"\nDataFrame2 ...\n",dataFrame2
# merge DataFrames with common column Car
mergedRes = pd.merge(dataFrame1, dataFrame2, on ='Car')
print"\nMerged data frame with common column...\n", mergedRes输出
这将生成以下输出 −
DataFrame1 ... Car Units 0 BMW 100 1 Lexus 150 2 Audi 110 3 Mustang 80 4 Bentley 110 5 Jaguar 90 DataFrame2 ... Car Reg_Price 0 BMW 7000 1 Lexus 1500 2 Audi 5000 3 Mustang 8000 4 Mercedes 9000 5 Jaguar 6000 Merged data frame with common column... Car Units Reg_Price 0 BMW 100 7000 1 Lexus 150 1500 2 Audi 110 5000 3 Mustang 80 8000 4 Jaguar 90 6000
广告
数据结构
网络
RDBMS
操作系统
Java
iOS
HTML
CSS
Android
Python
C 程序
C++
C#
MongoDB
MySQL
Javascript
PHP