将掩码数组的数据部分作为分层 Python 列表返回
要将掩码数组的数据部分作为分层 Python 列表返回,请在 Numpy 中使用 **ma.MaskedArray.tolist()** 方法。数据项将转换为最接近的兼容 Python 类型。
掩码值将转换为 fill_value。如果 fill_value 为 None,则输出列表中相应的条目将为 None。该方法返回掩码数组的 Python 列表表示形式。
掩码数组是标准 numpy.ndarray 和掩码的组合。掩码要么是 nomask,表示关联数组的任何值均无效,要么是布尔数组,用于确定关联数组的每个元素的值是否有效。
步骤
首先,导入所需的库 -
import numpy as np import numpy.ma as ma
使用 numpy.array() 方法创建具有 int 元素的数组 -
arr = np.array([[49, 85, 45], [67, 33, 59]]) print("Array...
", arr) print("
Array type...
", arr.dtype)
获取数组的维度 -
print("Array Dimensions...
",arr.ndim)
创建掩码数组并将其中一些标记为无效 -
maskArr = ma.masked_array(arr, mask =[[0, 0, 1], [ 0, 1, 0]]) print("
Our Masked Array
", maskArr) print("
Our Masked Array type...
", maskArr.dtype)
获取掩码数组的维度 -
print("
Our Masked Array Dimensions...
",maskArr.ndim)
获取掩码数组的形状 -
print("
Our Masked Array Shape...
",maskArr.shape)
获取掩码数组的元素数量 -
print("
Elements in the Masked Array...
",maskArr.size)
要将掩码数组的数据部分作为分层 Python 列表返回,请在 Numpy 中使用 ma.MaskedArray.tolist() 方法 -
print("
Result of the transformation...
",maskArr.tolist())
示例
# Python ma.MaskedArray - Return the data portion of the masked array as a hierarchical Python list import numpy as np import numpy.ma as ma # Create an array with int elements using the numpy.array() method arr = np.array([[49, 85, 45], [67, 33, 59]]) print("Array...
", arr) print("
Array type...
", arr.dtype) # Get the dimensions of the Array print("
Array Dimensions...
",arr.ndim) # Create a masked array and mask some of them as invalid maskArr = ma.masked_array(arr, mask =[[0, 0, 1], [ 0, 1, 0]]) print("
Our Masked Array
", maskArr) print("
Our Masked Array type...
", maskArr.dtype) # Get the dimensions of the Masked Array print("
Our Masked Array Dimensions...
",maskArr.ndim) # Get the shape of the Masked Array print("
Our Masked Array Shape...
",maskArr.shape) # Get the number of elements of the Masked Array print("
Elements in the Masked Array...
",maskArr.size) # To return the data portion of the masked array as a hierarchical Python list, use the ma.MaskedArray.tolist() method in Numpy # Data items are converted to the nearest compatible Python type. # Masked values are converted to "fill_value" parameter. # We have set fill_value as None, i.e. the corresponding entries in the output list will be None. print("
Result of the transformation...
",maskArr.tolist())
输出
Array... [[49 85 45] [67 33 59]] Array type... int64 Array Dimensions... 2 Our Masked Array [[49 85 --] [67 -- 59]] Our Masked Array type... int64 Our Masked Array Dimensions... 2 Our Masked Array Shape... (2, 3) Elements in the Masked Array... 6 Result of the transformation... [[49, 85, None], [67, None, 59]]
广告